
October, 2002 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

ION Java
User’s Guide

1002ION16JVA

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Configuring ION Java .. 9

Starting and Configuring the ION Daemon ... 10

Configuring ION Java for Windows .. 11

The ION Java Properties Dialog .. 11

Checking Status with the ION Java Status Utility ... 19

Windows Command Line Installation of the ION Daemon 20

Using Windows Services Manager to Start the ION Daemon 21

Configuring ION Java for UNIX ... 22

Starting the ION Daemon on UNIX .. 22

Starting the ION Daemon at Boot Time .. 26

Checking the Status of the ION Daemon ... 27

Shutting Down the ION Daemon ... 27
ION Java User’s Guide 3

4

Manually Configuring Your Web Server .. 29

Configuring The ION HTTP Tunnel Broker ... 31

Using the Tunnel Broker .. 31

Starting the ION Tunnel Broker Daemon .. 32

Command Security .. 34

Security Command Files .. 34

Client Verification ... 35

Connection Limit ... 35

Chapter 2:
Overview ... 37

What is ION Java? ... 38

Recommended Skills ... 38

ION Java Architecture ... 40

ION Server ... 40

ION Daemon .. 41

ION HTTP Tunnel Broker ... 41

Pre-Built ION Client Applets .. 43

ION Component Classes .. 43

ION Low-Level Classes ... 43

ION Java Limitations ... 44

Server Limitations .. 44

IDL Limitations ... 44

ION Java Performance Considerations .. 45

Tips for Increasing Execution Speed in ION Java ... 45

Bandwidth Issues ... 46

Running the ION Java Examples ... 48
Contents ION Java User’s Guide

5

Where to Place HTML and Class Files ... 51

Testing ION Applications Locally ... 51

Publishing ION Applications on Your Web Server 51

Where to Locate the ION Class Files .. 52

What Are the Required Class Files? .. 53

Chapter 3:
Overview of the ION Java Classes ... 55
The ION Java Class Hierarchy .. 56

ION Low-Level Classes ... 57

ION Component Classes .. 58

ION Pre-Built Applets ... 61

Using the Component Classes ... 63

Setting Values .. 63

Getting and Setting Properties ... 63

Drawing ... 63

AWT vs. Swing .. 64

Chapter 4:
Using ION’s Pre-Built Applets ... 67

The <APPLET> Tag .. 68

Attributes ... 68

Supporting Java-Incapable Browsers ... 71

Parameters Specified via <PARAM> Tags ... 72

Connecting to the ION Server ... 72

Behavior Parameters .. 74

IONGraphicApplet ... 76

IONContourApplet .. 78

IONMapApplet .. 81

IONPlotApplet ... 84

IONSurfaceApplet ... 86
ION Java User’s Guide Contents

6

Chapter 5:
Building ION Applets and Applications 89
Direct Graphics in ION .. 90

The ION Device ... 90

Keywords Accepted by the ION Device .. 90

Object Graphics in ION ... 94

Using Object References ... 95

Compiling .java Files ... 96

Error Handling and ION Exceptions .. 98

Debug Mode .. 99

Debugging Your Application ... 99

Converting Between IDL and Java Bytes .. 100

Considerations Specific to ION Applets .. 102

Including Applets in HTML Pages .. 102

Supporting Java Archive Files ... 103

Browser Support of ION Class Library Versions .. 103

Supporting Multiple Browser Types .. 104

Simple Applet Example ... 105

Further Examples ... 109

ION Applets and Scripting Languages .. 109

Tips and Tricks .. 115

Chapter 6:
ION Java Class and Method Reference 117

How to Use this Chapter .. 119

Syntax .. 119

Arguments .. 120

Exceptions .. 121

Example ... 121

IONCallableClient Class .. 122

IONCanvas / IONJCanvas Class ... 134

IONCommandDoneListener Interface ... 139
Contents ION Java User’s Guide

7

IONComplex Class .. 141

IONContour / IONJContour Class ... 146

IONDComplex Class ... 153

IONDisconnectListener Interface .. 158

IONDrawable Interface .. 160

IONGraphicsClient Class .. 163

IONGraphicConnection Interface .. 172

IONGrConnection / IONJGrConnection Class .. 173

IONGrContour Class ... 180

IONGrDrawable / IONJGrDrawable Class ... 188

IONGrGraphic Class .. 197

IONGrMap Class ... 203

IONGrMapContinents Class .. 209

IONGrMapGrid Class .. 212

IONGrMapImage Class ... 215

IONGrPlot Class .. 220

IONGrSurface Class .. 226

IONMap / IONJMap Class .. 232

IONMouseListener Interface ... 238

IONOffScreen Class .. 242

IONOutputListener Interface ... 245

IONPlot / IONJPlot Class .. 246

IONSurface / IONJSurface Class ... 252

IONVariable Class ... 259

IONWindowingClient Class .. 282

Chapter 7:
Troubleshooting ... 287

Avoiding Conflicting ION 1.4 and ION 1.6 Installations 288

Checking Web Server Communication ... 288

Troubleshooting ION Service Problems .. 289

Troubleshooting Applets that Fail to Display .. 290
ION Java User’s Guide Contents

8

Troubleshooting “Not Found” Errors .. 292

Troubleshooting Licensing Errors ... 293

Setting the IDL Path .. 293

Troubleshooting Security Errors .. 294

Encountering Browser Timeouts with Java Errors 294

ION Server Timeout .. 295

JDK 1.2 Required for Clients .. 295

Index .. 297
Contents ION Java User’s Guide

Chapter 1:

Configuring ION Java
This chapter discusses the process of setting up and starting the ION Daemon after it
has been installed, and discusses strategies for locating your HTML and Java class
files. The following topics are covered:

• Configuring ION Java for Windows

• Configuring ION Java for UNIX

• Configuring The ION HTTP Tunnel Broker

• Command Security
ION Java User’s Guide 9

10 Chapter 1: Configuring ION Java
Starting and Configuring the ION Daemon

The ION Daemon is a process that listens to a specified socket port, waiting for a
communication request. Once a connection is received and verified, the daemon
starts up an ION Server process, connects the client to the server process and waits
for further connection requests.

Note
If you are unfamiliar with ION Java, it may be helpful to refer to Chapter 2,
“Overview” for information regarding general ION Java architecture including an
overview of the ION server/client relationship, the ION Daemon and ION Tunnel
Broker services before beginning the configuration process.

If you have client applets located behind a firewall, which attempt and fail to
communicate with an ION Server on the other side of a firewall, you will need to start
and configure the ION Tunnel Broker in addition to the ION Daemon. See
“Configuring The ION HTTP Tunnel Broker” on page 31 for more information.

ION provides a set of utility programs that allow you start, configure and manage the
ION Daemon and the HTTP Tunnel Broker. See the following section for your
platform:

• On UNIX platforms, run the utility programs from the shell prompt. See
“Configuring ION Java for UNIX” on page 22 for more information.

• On Windows platforms use the GUI utilities described in the section.
“Configuring ION Java for Windows” on page 11.

All utilities and command-line programs discussed in this chapter are located in the
following platform directory:

• Windows: RSI-DIR\idl56\products\ion16\ion_java\bin

• UNIX: RSI-DIR/ion_1.6/ion_java/bin

where RSI-DIR is the directory in which you installed ION.
Starting and Configuring the ION Daemon ION Java User’s Guide

Chapter 1: Configuring ION Java 11
Configuring ION Java for Windows

ION Java for Windows includes two dialog-based utilities that duplicate the
functionality of the command-line utilities discussed in “Starting the ION Daemon on
UNIX” on page 22.

• The ION Java Properties utility presents a tabbed dialog that allows you to
start, configure and control ION Daemon settings. For more information, see
the following section, “The ION Java Properties Dialog”.

• The ION Java Status utility allows you to check the status of the ION
Daemon or the Tunnel Broker. For more information, see “Checking Status
with the ION Java Status Utility” on page 19.

The ION Java Properties Dialog

To configure ION Java for Windows perform the following steps:

1. Access the ION Java Properties utility from the Start menu by selecting
Programs → Research Systems ION 1.6 → ION Java Properties. This
program, wionprop.exe, is located in the bin directory of your ION Java
installation.

2. Modify the desired settings on each of the tabs described in the following
sections:

• See “The Control Tab” on page 12 to install, remove, start or stop the ION
Daemon service.

• See “The Locations Tab” on page 14 to set ION and IDL directory paths,
the ION log file and IDL search path.

• See “The Security Tab” on page 16 and “The Commands Tab” on page 17
to define which IDL commands should or should not be executed.

• See “The Broker Tab” on page 18 to configure the ION Tunnel Broker.

3. After making changes, click “OK” to accept the change and close the dialog,
“Apply” to accept the change but leave the dialog open, or “Cancel” to close
the dialog without making any changes.
ION Java User’s Guide Configuring ION Java for Windows

12 Chapter 1: Configuring ION Java
The Control Tab

The Control Tab is used to start, stop or remove the ION Service and to configure the
ION daemon attributes.

Use the Control tab to make the following changes:

Attribute Description

Remove / Install Removes or installs the ION Service in the Windows service
registry.

Note - The service was automatically installed during your
installation which called ion_srvinst.exe with the -
install option so you will probably not need to remove or
install the service until a new version of ION is released. See
“Windows Command Line Installation of the ION Daemon”
on page 20 for more information regarding the ion_srvinst
utility.

Table 1-1: ION Java Properties — Control Tab
Configuring ION Java for Windows ION Java User’s Guide

Chapter 1: Configuring ION Java 13
Start / Stop Starts or stops the ION service. This button performs the same
actions as the Services dialog described in the section “Using
Windows Services Manager to Start the ION Daemon” on
page 21.

Note - Occasionally, the service may be unable to respond to a
request. For more information, see “Troubleshooting ION
Service Problems” on page 289.

ION Port Number Defines the port number the ION Service listens to for
connection requests.

ION
Communication
Timeout

Specifies the number of seconds ION will wait before closing
a connection.

Allow Remote
Utility
Connections

Select this checkbox to allow the iondown and ionstat
utility programs to be run from computers other than the one
on which the ION service is installed.

Attribute Description

Table 1-1: ION Java Properties — Control Tab (Continued)
ION Java User’s Guide Configuring ION Java for Windows

14 Chapter 1: Configuring ION Java
The Locations Tab

The Locations Tab of the ION Java Properties dialog configures the paths used by
ION Java.

Use the Location Tab, to define the following settings:

Attribute Description

ION Directory Specifies the ION installation directory on your server machine.

IDL Directory Specifies the IDL directory on your server machine.

ION Log File Specifies the location of a text file that will contain the ION Server
logs. Click “View” to view the contents of the log file.

Table 1-2: ION Java Properties — Locations Tab
Configuring ION Java for Windows ION Java User’s Guide

Chapter 1: Configuring ION Java 15
IDL Path Specifies the search path to the directory or directories containing
the IDL library (.pro and .sav) files. In this field, specify the Web
server’s ION Java directory where IDL files were copied during
ION installation. For example, using the Apache web server, this
path may be:

+C:\Program Files\Apache Group\Apache2\htdocs\IO
NJava

You can enter either a “;” separated list of multiple directories, or
use a “+” in front of a directory indicating that all subdirectories of
the specified directory should be searched. See “Setting the IDL
Path” on page 293 if you need more information.

Attribute Description

Table 1-2: ION Java Properties — Locations Tab (Continued)
ION Java User’s Guide Configuring ION Java for Windows

16 Chapter 1: Configuring ION Java
The Security Tab

The Security Tab, pictured in the following figure, allows you to define the
commands that ION should or should not execute.

Use the Location Tab, to define the path to text files containing the following items:

Attribute Description

Exclusion List Contains a list of the commands ION should not execute.

Click the Edit button on either field to edit the text file. See
“Security Command Files” on page 34 for details on how the
ION Daemon handles inclusion and exclusion lists and how
they can be created.

Inclusion List Contains a list of the commands ION is allowed to execute.

Click the Edit button on either field to edit the text file. See
“Security Command Files” on page 34 for details on how the
ION Daemon handles inclusion and exclusion lists and how
they can be created.

Active Security
Groups

Select options to disable entire classes of IDL functionality.
See the table, “Active Security Group Tokens” on page 25 for
a description of the security tokens associated with this field.

Table 1-3: ION Java Properties — Security Tab
Configuring ION Java for Windows ION Java User’s Guide

Chapter 1: Configuring ION Java 17
The Commands Tab

The Commands tab dialog offers another way of specifying IDL commands which
should or should not be executed.

To add a command, click Add and enter a of an IDL command to the list of
individual commands to be excluded or allowed by the ION security mechanism. To
remove a command, select a command from either list and click Remove.

Note
Security Command files can also be used to designate which IDL commands are or
are not executed. See “Security Command Files” on page 34 for details.
ION Java User’s Guide Configuring ION Java for Windows

18 Chapter 1: Configuring ION Java
The Broker Tab

The Broker tab allows the configuration of the ION Tunnel Broker. See “Configuring
The ION HTTP Tunnel Broker” on page 31 for information about the Tunnel Broker.

Within the Broker tab, you can make the following configurations:

Attribute Description

Enable HTTP Broker Select this option to enable or disable the ION Tunnel
Broker.

Broker Port Number Enter the port number to which the ION Tunnel Broker will
listen. The default value is 9085.

Maximum HTTP
Connections

Enter the maximum number of HTTP connections allowed
at any one time.

Timeout (minutes) Enter the number of minutes an ION peer should wait
before closing a connection.

Broker Log File Specifies the location of a text file that will contain the ION
Tunnel Broker logs. Click View to view the contents of the
log file.

Table 1-4: ION Java Properties — Broker Tab
Configuring ION Java for Windows ION Java User’s Guide

Chapter 1: Configuring ION Java 19
Checking Status with the ION Java Status Utility

The ION Java Status utility allows you to obtain information about the current state
of the ION Daemon and ION Tunnel Broker. Access the ION Java Status utility from
the Start menu by selecting Programs → Research Systems ION 1.6 → ION Java
Status. This program, wionstat.exe, is located in the bin directory of your ION
Java installation.

To check the status of a service set the following fields:

Field Description

Host Set this field to the name of the computer on which either the
ION Daemon or ION Tunnel Broker is running.

Table 1-5: ION Status
ION Java User’s Guide Configuring ION Java for Windows

20 Chapter 1: Configuring ION Java
Windows Command Line Installation of the ION Daemon

Use the ion_srvinst.exe program to install, control, and check the status of the
ION Daemon Windows service. The ION installation process automatically calls
ion_srvinst with the -install flag so you do not need to install it again. You can
use this program to remove the service or configure how the daemon is started.

Note
To start, stop and remove the ION Daemon service, you can also use the ION Java
Properties dialog, described in “Configuring ION Java for Windows” on page 11.
To configure manual or automatic startup, you can also use the Windows Services
dialog described in “Using Windows Services Manager to Start the ION Daemon”
on page 21.

The ion_srvinst command uses the following syntax:

ion_srvinst [-install | -remove] [-start = auto | manual]
[-iondir=iondir]

Note
If no switches are specified, ion_srvinst prints the status of the service.

The switches to the ion_srvinst command are described below:

-install

Set this switch to install the ION Daemon service into the system.

Port Number Set this field equal to the port being watched by either the ION
Daemon or the ION Tunnel Broker. The default is port 7085
which is the default port for the ION Daemon. To check the
status of the ION HTTP Tunnel Broker, you must specify the
port on which the Tunnel Broker is listening (the default is
9085).

Click Query to retrieve information on the Daemon or Tunnel
Broker running on the specified host and port. Click Clear to
clear the display, or OK to dismiss the dialog.

Field Description

Table 1-5: ION Status (Continued)
Configuring ION Java for Windows ION Java User’s Guide

Chapter 1: Configuring ION Java 21
-remove

Set this switch to remove the ION Daemon service from the system.

-start

Set this switch to specify the start type of the service. If set to auto, the ION Daemon
service will be started by the Windows system at startup. If set to manual (the
default), the ION Daemon service must be started through the ION Java Properties
dialog or the Control Panel Services dialog. Note that this option is ignored if the
-install switch is not also specified.

-iondir

Use this switch to specify the ION installation directory, for example,
RSI-DIR\idl56\products\ion16, not
RSI-DIR\idl56\products\ion16\ion_java. Setting this switch will override
any Windows registry entries and environment variable settings.

Using Windows Services Manager to Start the ION Daemon

Use the Services dialog to start, stop or configure automatic or manual startup modes
of the ION Java Daemon. To open the Service dialog, do one of the following:

• On Windows NT, select Start → Settings → Control Panel → Services

• On Windows 2000, select Start → Settings → Control Panel →
Administrative Tools → Services

In the Services dialog, select ION Java Daemon 1.6 and use the interface to modify
the settings. The following figure shows the Windows NT Services dialog with the
ION Daemon selected.
ION Java User’s Guide Configuring ION Java for Windows

22 Chapter 1: Configuring ION Java
Configuring ION Java for UNIX

This section covers the following topics:

• “Starting the ION Daemon on UNIX” on page 22

• “Starting the ION Daemon at Boot Time” on page 26

• “Checking the Status of the ION Daemon” on page 27

• “Shutting Down the ION Daemon” on page 27

Starting the ION Daemon on UNIX

Start the ION Daemon process by executing the iond command at the shell prompt.
The iond command uses the following syntax:

iond [-exfile=filename] [-infile=filename] [-excomm="routine0,
routine1, ...routinen"] [-incomm="routine0, routine1,
...routinen"] [-http] [-httplog=filename] [-httpport=port]
[-httptimeout=minutes] [-logfile=filename]
[-maxconn=connections] [-port=port] [-rutil]
[-security="device, df, filein, fileout, fileio, linking,
none, os"] [-timeout=seconds]

Note
You must execute the ion_setup script before starting the ION Daemon. For more
information, see “Define ION Environment Variables and Aliases” in the Installing
and Licensing IDL 5.6 manual.

The following command line parameters are accepted by the ION Daemon:

-exfile

Set this switch to the name of a file that contains a list of IDL commands (procedure
or function names) that the server should not accept. Any command that attempts to
execute one of the listed routines will be rejected. The file should contain one routine
name on each line. Blank lines and lines that begin with the "#" character are ignored.

Specifying an exclude file will not alter the list of routines rejected as a result of the
setting of the -security switch.

-infile

Set this switch to the name of a file that contains a list of IDL commands (procedure
or function names) that the server should accept. Any command that attempts to
Configuring ION Java for UNIX ION Java User’s Guide

Chapter 1: Configuring ION Java 23
execute a routine that is not in the list will be rejected. The file should contain one
routine name on each line. Blank lines and lines that begin with the "#" character are
ignored.

Specifying an include file will not alter the list of routines rejected as a result of the
setting of the security switch.

Note
If a routine is excluded (either via an exclude file, a list of excluded routines, or via
the -security switch), it will be rejected even if that routine is also included in an
include file or list.

-excomm

Set this switch to a comma-separated list of IDL commands (procedure or function
names) to add to the exclusion list. This switch works in the same way as the
-exfile switch; it is provided as a convenience.

Specifying a list of routines to exclude will not alter the list of routines rejected as a
result of the setting of the -security switch.

-incomm

Set this switch to a comma-separated list of IDL commands (procedure or function
names) to add to the inclusion list. This switch works in the same way as the
-infile switch; it is provided as a convenience.

Specifying a list of routines to include will not alter the list of routines rejected as a
result of the setting of the -security switch.

Note
If a routine is excluded (either via an exclude file, a list of excluded routines, or via
the -security switch), it will be rejected even if that routine is also included in an
include file or list.

-http

Set this switch to start the ION HTTP Tunnel Broker when starting the ION Daemon.
See “Configuring The ION HTTP Tunnel Broker” on page 31 for details on the ION
Tunnel Broker.
ION Java User’s Guide Configuring ION Java for UNIX

24 Chapter 1: Configuring ION Java
-httplog

Set this switch to the name of the file in which you wish to save informational
messages from the ION Tunnel Broker. If no logfile is specified, messages will be
written to the standard out.

-httpport

Set this switch to the port number that the ION HTTP Tunnel Broker should watch
for connection requests. If you do not specify a value for the -httpport switch, the
ION Tunnel Broker watches port 9085.

-httptimeout

Set this switch to the number of minutes the ION Tunnel Broker HTTP peer should
stay alive for without hearing from the client. A timeout is necessary to close Tunnel
Broker peer processes that may be left running if a browser crashes or experiences
some other error that disconnects the browser without shutting down the peer
process. If set to 0, the peer will never time out.

-logfile

Set this switch to the name of the file in which you wish to save informational
messages from the ION Daemon. If no logfile is specified, messages will be written
to the standard output. (Under UNIX, you can create a log file by redirecting the
output from iond to a log file of your choosing using the normal system output
redirection mechanism.)

-maxconn

Set this switch to the maximum number of connections that can be active at once. If
you do not specify a value for the -maxconn switch, the maximum number of
connections will be equal to the number of IDL licenses you have available.

-port

Set this switch to the port number that the ION Daemon should watch for connection
requests. If you do not specify a value for the -port switch, the ION Daemon
watches port 7085.

-rutil

Set this switch to allow the utility routines iondown and ionstat to be run from any
host. By default, connections from these routines are allowed only if the routines are
run on the same host as the ION Daemon.
Configuring ION Java for UNIX ION Java User’s Guide

Chapter 1: Configuring ION Java 25
-security

Set this switch to a comma-separated list of tokens that define a list of IDL routines.
IDL routines specified via a token in the security list will not be passed through to the
IDL session by the ION Server.

If you do not include the security switch when starting the ION Daemon, the
following default tokens are set:

fileio, os, linking, device, df

If you include the -security switch when starting the ION Daemon, only the tokens
you specify are set. See the discussion of the -infile, -exfile, -incomm, and
-excomm switches for further information on specifying which IDL commands will
be accepted by daemon.

The -security switch accepts the following tokens. (In the lists below, the asterisk
is used to represent all IDL routines of a given type.)

Token Description

df Disables all Scientific Data Format routines (CDF_*, EOS_*, HDF_*,
NCDF_*).

device Disables changing devices using the SET_PLOT routine.

filein Disables file input operations by disallowing use of the following
routines: GET_KBRD, OPENR, READ, READF, READU, READ_*,
TAPRD

fileout Disables file output operations by disallowing use of the following
routines: OPENW, PRINTF, TAPWRT, WEOF, WRITEU, WRITE_*

fileio Disables file input and output operations by disallowing use of the
following routines: ASSOC, CLOSE, EOF, FILEPATH, FLUSH,
FSTAT, GET_LUN, IOCTL, OPENU, POINT_LUN, REWIND, SKIPF

linking Disables calls from IDL to external code by disallowing use of the
following routines: CALL_EXTERNAL, LINKIMAGE

none No security checking is provided.

Table 1-6: Active Security Group Tokens
ION Java User’s Guide Configuring ION Java for UNIX

26 Chapter 1: Configuring ION Java
-timeout

Set this switch to the number of seconds ION will wait to receive a response. If no
response is received within the timeout interval, ION will make a second attempt (it
will “ping” the remote machine). If no response is received within the second timeout
interval, ION will close the connection.

The default timeout value is 60 seconds. You may wish to increase the timeout value
with extremely slow network connections.

Starting the ION Daemon at Boot Time

You can automatically start the ION daemon by adding the command
RSI-DIR/ion_1.6/ion_java/bin/iond to your system startup script, or by
installing and configuring the sys5_iond boot time startup script, as described
below:

Note
The following instructions may differ for your platform. For additional information,
refer to your host operating system documentation or the man pages for init, rc0,
rc2, and rc3.

• Linux — Using any text editor, add the ION daemon startup command,
RSI-DIR/ion_1.6/ion_java/bin/iond, to the end of the
/etc/rc.d/rc.local file.

• Sun Solaris, SGI IRIX — You must place a controlling script in a directory
(usually /etc/init.d or /sbin/init.d) and create links to that script
which runs at system startup and shutdown. A template for the controlling
script can be found in the file
RSI-DIR/ion_1.6/ion_java/bin/sys5_iond. This file contains
instructions on how to customize this script for your system, copy the file to

os Disables operating system access by disallowing use of the following
routines: CD, CALL_FUNCTION, CALL_METHOD,
CALL_PROCEDURE, DEFINE_KEY, DELETE_SYMBOL,
DELLOG, EXECUTE, FILEPATH, FINDFILE, GETENV,
GET_SYMBOL, POPD, PRINTD, PUSHD, SETENV, SETLOG,
SET_SYMBOL, SPAWN, TRNLOG

Token Description

Table 1-6: Active Security Group Tokens (Continued)
Configuring ION Java for UNIX ION Java User’s Guide

Chapter 1: Configuring ION Java 27
the appropriate directory, and create the links that will automatically run the
script at boot time.

Checking the Status of the ION Daemon

Use the ionstat utility to determine the current status of the ION Daemon or
Tunnel Broker. The status report includes the start time of the daemon and
information about clients currently connected to the ION Server.

The ionstat command uses the following syntax:

ionstat [-host=hostname] [-port=port]

The switches to the ionstat command are described below:

-host

Set this switch to the name of the host on which the ION Daemon or HTTP Tunnel
Broker is running. Unless the -rutil switch was set when the ION Daemon was
started, ionstat requests are only accepted from the host on which the daemon is
running.

-port

Set this switch to the port number of the port that the ION Daemon or HTTP Tunnel
Broker is listening. The default is port 7085 which is the default port for the ION
Daemon. To check the status of the ION HTTP Tunnel Broker, you must specify the
port on which the Tunnel Broker is listening (the default is 9085).

Shutting Down the ION Daemon

Use the iondown utility to shut down the ION Daemon or Tunnel Broker. The
iondown command uses the following syntax:

iondown [-force] [-host=hostname] [-port=port]

Note
Under Windows, you will generally use the ION service rather than starting and
stopping the ION Daemon manually. However, if you used the iond command to
start the ION Daemon on your machine, you can use the iondown command to stop
it.

The switches to the iondown command are described below:
ION Java User’s Guide Configuring ION Java for UNIX

28 Chapter 1: Configuring ION Java
-force

Set this switch to force the ION Daemon or HTTP Tunnel Broker to shut down
without prompting. If -force is not specified, iondown will prompt you before
shutting down the daemon.

-host

Set this switch to the name of the host on which the ION Daemon or HTTP Tunnel
Broker is running. Unless the -rutil switch was set when the ION Daemon was
started, iondown requests are only accepted from the host on which the daemon is
running.

-port

Set this switch to the port number of the port that the ION Daemon or HTTP Tunnel
Broker is watching. The default is port 7085 which is the default port for the ION
Daemon. To shut down the ION HTTP Tunnel Broker, you must specify the port on
which the Tunnel Broker is listening (the default is 9085).
Configuring ION Java for UNIX ION Java User’s Guide

Chapter 1: Configuring ION Java 29
Manually Configuring Your Web Server

If you skipped the “Web Server Configuration” step during installation, you will need
create directories and copy files from the ION installation to your Web server
directory after installing and configuring a Web server. Follow the steps for your
platform.

On UNIX — Run the configuration script, java_config, located in the default
installation directory, RSI-DIR/ion_1.6/ion_java/bin. This script will create
directories and copy the required files to your Web server’s HTML files directory as
well as configure the IDL_PATH.

On Windows — manually copy files from the ION distribution into the Web server’s
HTML files directory as follows:

1. Create a directory named IONJava in the Web Server\htdocs directory (or
the Web Server\wwwroot directory for IIS).

2. Copy index.html from the main ION installation directory,
RSI-DIR\idl56\products\ion16\ion_java directory to the
Web Server\htdocs\IONJava directory.

3. Create a subdirectory named classes in the
Web Server\htdocs\IONJava directory. Copy the following files from
RSI-DIR\idl56\products\ion16\ion_java\classes to the new
directory, Web Server\htdocs\IONJava\classes:

ion_16.jar

ion_16.zip

all .class files

Note
You do not need to copy the com directory, contained in the classes
directory, or any of its subdirectories. All of these files are packaged into the
ion.jar and ion.zip files.

4. Copy the entire examples directory, including all files and subdirectories,
from RSI-DIR\idl56\products\ion16\ion_java to the
Web Server\htdocs\IONJava directory.

When you finish, the main level htdocs\IONJava directory of your Web
server will include two subdirectories, classes and examples and an
index.html file.
ION Java User’s Guide Manually Configuring Your Web Server

30 Chapter 1: Configuring ION Java
5. Update your IDL search path to include the Web Server/htdocs directory.
For more information, see “The ION Java Properties Dialog” on page 41.
Manually Configuring Your Web Server ION Java User’s Guide

Chapter 1: Configuring ION Java 31
Configuring The ION HTTP Tunnel Broker

The ION HTTP Tunnel Broker is a program that allows ION client applets (running
in World Wide Web browsers) located behind a network firewall to communicate
with an ION Server on the other side of the firewall. For more information about
network firewalls in regards to the ION client/server model, see “ION HTTP Tunnel
Broker” on page 41.

Note
Due to errors in virtual machine implementations, Java Applets may use SOCKS to
open an HTTP connection. As such, the broker may fail with firewalls that do not
support the SOCKS protocol.

Using the Tunnel Broker

Using the ION Tunnel Broker is very simple. On the server side, you must ensure that
the ION Tunnel Broker is running; see “Starting the ION Tunnel Broker Daemon” on
page 32 for details. On the client side, you have the option of specifying one of three
connection types via the CONNECTION_TYPE parameter in an ION applet:

• HTTP_CON — Make only HTTP connections, using the The ION HTTP
Tunnel Broker. These connections are typically slower than SOCK_CON.

• SOCK_CON — Make only socket connections, using only the ION Daemon.

• BEST_CON — Attempt to make a socket connection. If a socket connection is
not possible, attempt to make an HTTP connection. This is the default setting.

Since “BEST_CON” is the default, you do not need to add the
CONNECTION_TYPE parameter at all if you want your ION Server to accept either
socket or HTTP connections. See “Parameters Specified via <PARAM> Tags” on
page 72 for details on other parameters related to the ION Tunnel Broker.
ION Java User’s Guide Configuring The ION HTTP Tunnel Broker

32 Chapter 1: Configuring ION Java
Starting the ION Tunnel Broker Daemon

The ION Tunnel Broker Daemon must be running for ION to be able to use HTTP
connections. There are three ways to start the ION Tunnel Broker:

1. On Windows systems, by using the ION Java Properties dialog. See the section
“The Broker Tab” on page 18 for more information.

2. By specifying the -http switch to the iond command. With this method, both
the ION Daemon and the ION Tunnel Broker are started at the same time. You
can also specify the -httpport and -httplog switches to specify ION
Tunnel Broker options. See “Configuring ION Java for UNIX” on page 22 for
details.

3. Using the ion_httpd command at the command line.

The ion_httpd command uses the following syntax:

ion_httpd [-ionhost=hostname] [-ionport=port] [-port=port]
[-logfile=filename] [-maxpeer=number_of_peers] [-timeout=minutes]

Command-line switches for the ion_httpd command are listed below:

-ionhost

Set this switch equal to the name of the host on which the ION Daemon is running.
Note that the ION Tunnel Broker may be running on a different host than the ION
Daemon and ION Server. Note that Java applet security requires that the Tunnel
Broker be run on the same machine from which the ION Java classes were loaded.

-ionport

Set this switch equal to the port number on which the ION Daemon is listening. If not
specified the ION Daemon listens on port 7085.

Note
The ION Tunnel Broker must be listening to a different port than the ION Daemon.

-port

Set this switch to the port number that the ION HTTP Tunnel Broker should watch
for connection requests. If you do not specify a value for the -httpport switch, the
default port is 9085.
Configuring The ION HTTP Tunnel Broker ION Java User’s Guide

Chapter 1: Configuring ION Java 33
-logfile

Set this switch to the name of the file in which you wish to save informational
messages from the ION Tunnel Broker. If no logfile is specified, messages will be
written to the standard output. (Under UNIX, you can create a log file by redirecting
the output from ion_httpd to a log file of your choosing using the normal system
output redirection mechanism.)

-maxpeer

Set this switch to the maximum number of ION Tunnel Broker peers that can be
active at once. If set to 0 (the default setting), the maximum number of peers will be
equal to the number of IDL licenses you have available.

-timeout

Set this switch to the number of minutes the ION Tunnel Broker HTTP peer should
stay alive without hearing from the client. A timeout is necessary to close Tunnel
Broker peer processes that may be left running if a browser crashes or experiences
some other error that disconnects the browser without shutting down the peer
process. If set to 0, the peer will never time out.
ION Java User’s Guide Configuring The ION HTTP Tunnel Broker

34 Chapter 1: Configuring ION Java
Command Security

The ION Server implements a security system based on IDL command filtering. The
security system has two internal command lists: one list consists of commands that
are not allowed to be run on the IDL server process; the other list specifies
commands that are allowed. (If an IDL command is included in both lists, it will not
be allowed to run.)

When an ION client sends an IDL command to the ION Server for execution, the
command line is scanned for function and procedure names. These names are first
checked against the command inclusion list (commands that can be run on the
server), and if the command is not in the list it is rejected. If the command inclusion
check passes, the routine is then checked against the command exclusion list
(routines that should not be run on the server). If the command is in the command
exclusion list, it is rejected. If the command passes the exclusion list check, it is sent
to the ION Server process for execution.

Note
ION’s command security configurations are designed to prevent IDL commands
from being used in an unauthorized or hostile manner during connections to your
ION Server. Remember that you must also properly configure your Web server to
prevent unauthorized access to your site via other mechanisms.

Security Command Files

Using a text file, you can specify IDL commands to be included or excluded from the
ION Server. Inclusion and exclusion text files consist of a single command on each
line. Lines that are blank or start with the "#" character are ignored. For example, you
could create an ION exclude file containing the following lines:

Commands to prevent execution of
CALL_FUNCTION
XBM_EDIT

To use an include or exclude file see the following directions for your platform:

• On UNIX, start the ION Daemon using the -infile and -exfile
command-line switches. See “Starting the ION Daemon on UNIX” on
page 22.

• On Windows, see “The Security Tab” on page 16.
Command Security ION Java User’s Guide

Chapter 1: Configuring ION Java 35
Client Verification

When the ION Daemon detects an incoming server connection, the daemon verifies
that the client is a valid ION client. ION clients are valid if they have been created
using the ION Java classes described in this document. If the client is not valid, the
daemon rejects the connection and no ION Server process is started.

Connection Limit

There are two limits set on the number of connections the ION Server will accept. If
you have specified a maximum number of connections via the -maxconn switch to
the ION Daemon process, the ION Daemon will reject new clients after reaching that
limit. If no maximum number of connections is specified to the daemon, the
maximum number of connections allowed is defined by the ION Server license. If the
limit is reached, the ION Daemon will notify new ION clients that the limit has been
reached and will close the connection.
ION Java User’s Guide Command Security

36 Chapter 1: Configuring ION Java
Command Security ION Java User’s Guide

Chapter 2:

Overview
This chapter introduces ION Java and discusses the ION Java architecture, including
the ION Service and Tunnel Broker Daemons. This chapter includes the following
topics:

• What is ION Java?

• ION Java Architecture

• ION Java Limitations

• ION Java Performance Considerations

• Running the ION Java Examples

• Where to Place HTML and Class Files
ION Java User’s Guide 37

38 Chapter 2: Overview
What is ION Java?

ION Java is a sophisticated system that brings the power of IDL to the Internet. ION
Java uses Java and Internet technology to deliver efficient data analysis and
visualization capabilities to World Wide Web client applications. ION Java is ideal
for organizations that have shared data that needs to be accessed and visualized by a
wide variety of users. ION Java can be configured as part of a public Web server, a
proprietary intranet server, or as both at the same time.

ION Java combines both IDL, the Interactive Data Language, and Java into a single,
powerful tool for building Web-based applications. Both IDL and Java are cross-
platform, interpreted languages. In contrast to Java, IDL is specifically designed for
the visualization and analysis of large, multi-dimensional technical datasets. IDL is
the language of choice for technical professionals, offering simple syntax, array-
oriented architecture, and rich library of analysis and visualization routines. ION
Java, ideal for client-server applications or Web-applets, gives Java developers the
power to deploy their applications for data sharing and data analysis more rapidly.

ION Java allows access to IDL from virtually any computer in the world. Updating
and maintaining ION is simple, since the product resides only on the server. Applets
are sent to clients over the Web, as needed.

Recommended Skills

ION is designed to make it easy for you to create interactive Web pages or
Internet/Intranet applications that use IDL. The following competencies are
recommended for efficient ION Java application development:

Familiarity with Web Server Administration

Even if you do not maintain the World Wide Web server at your site, you
should be aware of the configuration details. You will need to know where
files should be located for server access, what file permissions are necessary,
and any other site-specific details that apply to publishing HTML pages on the
World Wide Web.

JAVA Programming Knowledge

If you wish to build your own applications or applets, you will need to be
familiar with Java programming concepts. You will also need to know how
applets are embedded in HTML pages.
What is ION Java? ION Java User’s Guide

Chapter 2: Overview 39
Understanding of IDL

ION is designed to interact with IDL. To use ION, you will need to be familiar
with IDL’s basic command syntax and features.
ION Java User’s Guide What is ION Java?

40 Chapter 2: Overview
ION Java Architecture

The components that make up ION Java are illustrated in Figure 2-1.

ION Server

The ION Server is a program that manages communication between an ION client
application (either a Java Applet running in a Web browser or a stand-alone Java
application) and IDL. The ION Server translates requests from ION clients into
commands that can be processed by IDL, and then passes output from IDL back to
the client for display. The ION Server is discussed in detail in Chapter 1,
“Configuring ION Java”.

Once the incoming client has been verified by the ION Daemon, the ION Daemon
starts an ION Server process and connects the client with the ION Server process.
The ION Server process checks out an ION license and then begins command
processing. The ION Server process is responsible for the following:

Figure 2-1: ION Java Architecture

“Server” “Client”
ION Java Architecture ION Java User’s Guide

Chapter 2: Overview 41
• Reading requests from the ION client,

• Performing security checks on the client request,

• Executing valid ION/IDL commands,

• Sending graphic information and data to the ION client.

Security Checks

Once a command is received from the client, the request is passed through the ION
security system. Any security failure causes the command to be logged and an error
condition to be sent to the client. If the command passes the security system, it is
passed to IDL for execution.

Command Execution

When a command is executed, all graphic and command log information is sent to the
client. Once the command is completed the error status is sent to the client and the
ION Server process waits for the next request.

ION Daemon

The ION Daemon is a program that makes the initial connection between an ION
client and the ION Server. The ION Daemon “watches” a specific port on the ION
Server’s host computer. When the daemon receives a request for connection, it
performs basic security screening before connecting the ION client to the ION
Server. The ION Daemon is discussed in detail in Chapter 1, “Configuring ION
Java”.

The ION Daemon is responsible for the following:

• Parsing command line parameters

• Establishing the security level and initializing security levels

• Maintaining server logs

• Managing the number of current connections

• Receiving connections and starting ION Server processes

• Verifying incoming requests as valid ION clients

ION HTTP Tunnel Broker

The ION HTTP Tunnel Broker is a program that allows ION client applets (running
in World Wide Web browsers) located behind network firewalls to communicate with
ION Java User’s Guide ION Java Architecture

42 Chapter 2: Overview
an ION Server on the other side of the firewall. The Tunnel Broker is discussed in
detail in “Configuring The ION HTTP Tunnel Broker” on page 31.

Network firewalls work by isolating a network from the Internet as a whole and
allowing only pre-specified network operations to take place. In many cases, this
means that traffic between an internal network and the Internet must go through a
single computer, which allows connections of specified types and denies other
connections. Firewalls allow computers and data on the “inside” to be relatively safe
from intrusion by outsiders, while allowing the inside computers to make connections
with computers on the Internet via a set of relatively limited protocols, such as HTTP
and FTP.

The ION client/server model is based on a persistent two-way socket connection
between the client and server. Firewalls, in most cases, do not allow arbitrary
processes to open socket connections to remote servers. Because ION
communication is not based on any standard protocol, it may not be able to penetrate
a firewall that allows connection through only the standard and well-known protocols
(HTTP, FTP).

Freestanding ION Java applications running behind a firewall have little chance of
obtaining a connection through the firewall. However, ION applets running in a web
browser can take advantage of the HTTP connections provided by the browser and
use them to “tunnel” through the firewall and communicate with an external ION
Server. The ION HTTP Tunnel Broker provides all the functionality necessary for
ION Applets to successfully tunnel across most firewalls.

The Tunnel Model

The ION Tunnel model includes an HTTP communications layer on the ION Client
that maintains a connection to an ION HTTP Tunnel Broker. The Broker manages a
set of peers that communicate with and control ION Servers. HTTP requests sent
from the client to the server are dispatched to the appropriate peer and peer responses
are sent back to the client through the Broker in the form of an HTTP response.

Normally, when an ION client makes a connection, the ION Daemon sets up a direct
socket connection between the client and an ION Server process.

In the Tunnel model, ION clients connect to the ION Tunnel Broker rather than to the
ION Daemon. The Tunnel Broker requests that the ION Daemon start an ION Server
process, and attaches a peer to the server. The peer then acts as the client for
communication with the ION Server. The peer buffers server responses, packs them
into HTTP messages, and sends them through the Tunnel Broker back to the ION
client.
ION Java Architecture ION Java User’s Guide

Chapter 2: Overview 43
Pre-Built ION Client Applets

The ION package includes a set of pre-built Java applets. The pre-built applets allow
you to begin using ION immediately, without the need to write Java code. See
Chapter 4, “Using ION’s Pre-Built Applets” for details.

ION Component Classes

The ION Component classes provide a simple, straightforward interface that allows
you to create ION client applets and applications quickly and easily. While using the
ION Component classes does require that you write Java code, the classes handle
most of the details of writing applications to interact with IDL seamlessly. See
Chapter 3, “Overview of the ION Java Classes” for details.

ION Low-Level Classes

The ION low-level classes are the backbone of the ION Java system; they provide the
tools a professional Java programmer needs to create robust applications to interact
with IDL. The ION Component classes and the ION pre-built applets are both built
directly from the ION low-level classes. See “ION Low-Level Classes” on page 57
for details.
ION Java User’s Guide ION Java Architecture

44 Chapter 2: Overview
ION Java Limitations

Server Limitations

If the server is behind a firewall, you can use the ION Tunnel Broker which uses
HTTP Protocol to pass ION information through the firewall. (See “Configuring The
ION HTTP Tunnel Broker” on page 31 for details on the Tunnel Broker.)

IDL Limitations

The following IDL features are unavailable with ION Java:

• IDL Widgets

• The IDL line continuation character, $

All of IDL’s analytical routines and all of the IDL Direct Graphics and Object
Graphics routines are available, subject to the constraints imposed by the ION
security mechanism. (See“Command Security” on page 34 for more on ION’s
security mechanism.)
ION Java Limitations ION Java User’s Guide

Chapter 2: Overview 45
ION Java Performance Considerations

There are several issues which impact ION Java performance. While steps can be
taken to improve performance (see “Tips for Increasing Execution Speed in ION
Java” on page 45), many users note that execution of ION Java applications are
slower than equivalent applications executed in IDL. Also, IDL commands called
from an applet execute more slowly than IDL command line execution. Performance
can also differ between client platforms.

Extra communication layers are necessary when executing an IDL command in ION
Java and then displaying the results. When an IDL command is called from an ION
Java applet or Java application, the following required steps impact execution time:

1. The Java Virtual Machine interprets the Java code.

2. The initial connection to the ION Server initiates an IDL session.

3. The client browser running the Java applet sends requests to the ION Server.
Network traffic and bandwidth affects transmission rates.

4. The ION Server translates each request into commands that can be processed
by IDL. This may involve security command screening.

5. IDL interprets and executes the commands.

6. The ION Server returns output from IDL to the client for display.

7. The Java application draws graphic primitives received from the ION Server in
the browser. Java drawing routines are slower than raw UNIX motif or
Windows GDI devices. The drawing time can even vary between Java Virtual
Machines.

Note
Using the same machine as both the client and the server can further degrade ION
Java performance. Although network traffic is not an issue, communication must
still be routed through sockets and HTTP. Depending on the server machine
specifications, the extra resources required for context switching between the server
and the browser may hinder performance.

Tips for Increasing Execution Speed in ION Java

The following items can increase the execution speed of ION Java applets and
applications:
ION Java User’s Guide ION Java Performance Considerations

46 Chapter 2: Overview
Package Multiple IDL Commands into a Single .pro File

It is always more efficient to package multiple IDL commands into a single .pro file
than to call individual commands. With individual commands, the communication
layer must be transversed for each command. With a a single package of commands,
the communication layer is transversed only once. An example is included in the
“Advanced” section of the ION Examples. See “Running the ION Java Examples” on
page 48.

Convert TrueColor Images

TrueColor (24-bit) images are three times as large as indexed (8-bit) images. While
ION Java is capable of displaying 24-bit TrueColor images, you can speed up ION
Java execution by converting 24-bit images to 8-bit images. To do so, use the IDL
COLOR_QUAN function before displaying the image. By decreasing the image size,
this significantly reduces the transfer time necessary to display a graphics primitive
sent from the server to the client. Related considerations include clients who may not
have displays configured to display 24-bit images and browsers which automatically
dither images. An example is included in the “Basic” section of the ION examples.
See “Running the ION Java Examples” on page 48.

Send Complex Plots as a Single Image

ION Java sends graphics primitives to the client to be drawn by Java. More
complicated plots transfer more graphics primitives and take a longer time to be
drawn. You can decrease the amount of information sent to the client and time
required to draw complicated plots by doing one of the following:

• Render the plot to an off-screen pixmap in IDL and then use DEVICE, with the
COPY keyword to capture the image.

• Use the z-buffer in conjunction with an off-screen pixmap and then capture the
image using TVRD in conjunction with TV.

These methods send a single image to the client to be drawn. For very complicated
plots, this can be more efficient. For simple plots, however, this could increase the
amount of data that is sent to the client so using the default graphics primitives may
be more efficient. An example is included in “Advanced” section of the ION
Examples. See “Running the ION Java Examples” on page 48.

Bandwidth Issues

Because ION Java applications can be image-intensive, their performance depends
strongly on network bandwidth. Bandwidth may not be an issue if you are serving
your ION Java applications only to the users of your high-speed company intranet,
ION Java Performance Considerations ION Java User’s Guide

Chapter 2: Overview 47
but if your users are likely to be accessing your application over the Internet, through
an analog telephone line and low-speed modem, then close consideration must be
given to the size of data transferred to and from the ION Server. For example, if your
application allows the user to zoom in on a region of interest, then you could provide
the smallest, lowest-quality image necessary to give the user the required information
at each stage in the drill-down process.

Avoid Using Device Fonts

When a TrueType font is rendered in IDL, it is sent to the device as a set of polygons.
Depending on the symbol being rendered, the number of polygons generated can be
quite large which can increase download times to client machines. If you use
hardware fonts, the amount of data being sent to the client can be decreased in certain
situations since only the attributes and parameters of the fonts are being sent. Another
workaround is to render the graphic before sending it to the client. See “Send
Complex Plots as a Single Image” on page 46 for more information.
ION Java User’s Guide ION Java Performance Considerations

48 Chapter 2: Overview
Running the ION Java Examples

Once you have the ION Server properly configured and started, you are ready to run
the example applications. Several example applications are placed in your Web
server directory during the ION Java installation process.

Note
If you skipped the step which provided the location of your Web server’s HTML
files directory during the installation process, you will need to copy the appropriate
files to your Web server before running the examples. See “Manually Configuring
Your Web Server” on page 29 for instructions.

The examples illustrate ION features and many of the examples allow you to view
the Java source within your browser. These examples consist of at least two types of
files: HTML files that contain the Java applets, and the Java applets themselves,
which are contained in .class files. The raw Java source files for the example ION
Java classes are included in the src subdirectory of the examples directory. Also
included in the examples directory are a number of IDL .pro files that are called by
the ION demonstration applets.

To run the ION Java examples, complete the following steps:

1. Add the ION Java examples directory to IDL’s Search path (note that this
step may have been completed during the installation of ION Java if you
completed the “ION Java Web Server Configuration” dialog):

On Windows, add Web_Server\IONJava\examples to the IDL Search
path. For example, using the Apache web server, this might be C:\Program
Files\Apache Group\Apache2\htdocs.

On UNIX, add Web_Server\IONJava\examples to the IDL Search path.
For example, using the Apache web server, this might be
usr\local\apache2\htdocs.

Web_Server is the path specifying the location of the Web server’s HTML
files directory.

For more information about modifying the IDL Search Path, see “Setting the
IDL Path” on page 293.
Running the ION Java Examples ION Java User’s Guide

Chapter 2: Overview 49
2. Open your browser and enter the following URL.

http://hostname/IONJava/index.html

where hostname is your qualified domain name or machine name. This loads
a page containing ION Java basic and advanced applet links as well as a link to
Research System’s ION web site.

3. For a simple example, select the Basic ION Java Applets link and choose
“Simple Plot”. Click “View Source Code” to see the code required for this
applet.

The ION Java examples provide many samples of Web-based Java applications. The
examples have been divided into three levels:

• Basic ION Java Applets — illustrate simple ION Java concepts that are
necessary to understand before building your own applets. You can examine
the source code of each basic example to better understand the implementation
of simple concepts. Three categories of basic ION Java examples include pre-
built applets, component classes and low-level classes.

• Advanced ION Java Applets — illustrate advanced programming concepts
in ION Java. You can examine the source code and even use the applets as
building blocks for your own applets. Three categories of basic ION Java
examples include pre-built applets, component classes and low-level classes.

• ION Online Demos — display interactive ION Java web applications. A link
is provided to Research System’s ION site where you can view applications
that exemplify the power of ION Java.

When you are ready to develop your own applications, see the following section,
“Where to Place HTML and Class Files” on page 51 for strategies on where to store
the files required for your applications.

Note
If you are using Internet Explorer, you must access any HTML page that calls an
applet by specifying a URL. Attempting to open such a page using the browser’s
File → Open command or by double-clicking on an .html file fails to display the
applet and results in security errors. Use a URL that contains http:// rather than
file://.
ION Java User’s Guide Running the ION Java Examples

50 Chapter 2: Overview
Note
The source for a freestanding Java Console application has also been provided. See
the getversion.java file in the RSI-DIR\idl56\products\ion16\
ion_java\examples\src directory (Windows) or
RSI-DIR/ion_1.6/ion_java/examples/src directory (UNIX). You can
compile and run this example.
Running the ION Java Examples ION Java User’s Guide

Chapter 2: Overview 51
Where to Place HTML and Class Files

When you begin developing your own applications, you’ll need to decide where you
will put the HTML and Java class files that make up your applications. This section
discusses some strategies for locating your files.

Web-based ION Java applications consist of at least two types of files:

• HTML files — are the containers for your Java applets

• .class files — are containers for the Java applets themselves

HTML files must reside on your Web server, which may or may not be the same
machine on which the ION Server is located. Your class files, however, must reside
on the same host machine as the ION Server. This is due to Java applet security
mechanisms.

Testing ION Applications Locally

When learning how to write ION applications, and running the example applications
included with ION Java, you may find it easier to load the applications directly from
the ION Server machine rather than placing the files on your Web server and loading
them over a network. This allows you to run the example applications right from one
of the examples directories of your ION Java installation, and makes the process of
developing and testing your applications easier. This also takes the Web server out of
the loop, thereby eliminating the Web server as a potential source of application
errors. If you run the example applet applications directly from the
RSI-DIR\idl56\products\ion16\ion_java\examples directory (Windows)
or RSI-DIR/ion_1.6/ion_java/examples directory (UNIX), you do not need
to change the CODEBASE attribute for any of the <APPLET> tags.

Note
Certain browsers may generate a Java security exception when attempting to start
an applet contained in an HTML file opened by selecting “Open” from the File
menu. This exception prevents the applet from running. To work around this
exception, browse to the basic.html file using a URL that looks like http:// rather
than file://.

Publishing ION Applications on Your Web Server

Once you have developed your ION applications, you will need to place the HTML
files on your Web server. The recommended method is to create a subdirectory for
ION Java User’s Guide Where to Place HTML and Class Files

52 Chapter 2: Overview
ION applications under the default documents directory on your Web server. For
example, suppose you are using the Apache Web server. You could create a
subdirectory under the htdocs directory called \IONJava\myhtml in which you
place all your HTML files. The URL of such a page might be:

http://myhost.mydomain.com/myhtml/index.html

You can then develop and test your applications locally. When everything is working
correctly, you can publish your application by copying the myhtml directory
containing your HTML files, and your .class files to your web server.

If you do not place HTML files in a directory that is in or under the default
documents directory on your Web server (such as the htdocs directory on the
Apache Web server), you need to configure your Web server to allow access to files
in your directory. For example, if you place your HTML pages in a directory called
C:\rsi\idl56\products\ion_java\html, you need to configure your Web
server to allow access to this directory. Using Apache, modify DocumentRoot in
the httpd.conf file to include additional directories or modify Alias in the
httpd.conf file to add aliases to directories where you can place HTML files.

Where to Locate the ION Class Files

ION applets and applications must have access to the ION class files in order to run.
There are two ways to provide access to the ION class files:

• Use the <APPLET> tag’s CODEBASE attribute to point to the directory that
contains the required classes.

• Place the required class files in the same directory that contains the HTML
page that loads the applet.

Placing class files and HTML files in the same directory saves you from having to
use the CODEBASE attribute, but we recommend that you point to the .jar or .zip
files, described in the following section, and create separate directories for class and
HTML files.

For example, suppose you are using the Apache Web server. You could create a
subdirectory under the htdocs directory called \IONJava\classes in which you
place all the required class files. Assuming that your HTML files are in the
\IONJava\html directory, you would specify the CODEBASE attribute as follows:

CODEBASE="../classes"

See “CODEBASE” on page 69 for further details.
Where to Place HTML and Class Files ION Java User’s Guide

Chapter 2: Overview 53
What Are the Required Class Files?

During installation, ION class files are installed in the following location on the ION
Server machine:

Windows:

RSI_DIR\idl56\products\ion16\ion_java\classes\

UNIX:

RSI_DIR/ion_1.6/ion_java/classes/

where RSI_DIR is the location of the RSI directory on your system.

The ION installation program also copies these files to your Web server’s java files
directory if you completed the “ION Java Web Server Configuration” dialog. For
example, using the Apache Web server on Windows, the Web_Server directory
might be similar to C:\Program Files\Apache Group\Apache\htdocs.

ION’s Java class files are provided in three formats:

1. The raw Java class files are located in the com/rsi/ion subdirectory of the
classes directory.

2. A ZIP file named ion_16.zip. This contains compressed versions of all the
classes. This file is installed in the classes directory and is also copied to
your Web_Server/IONJava/classes directory.

3. A Java archive (JAR) file named ion_16.jar. This file contains
uncompressed version of the ION class files. This file is installed in the
classes directory an is also copied to your
Web_Server/IONJava/classes directory.

If you decide to create your own directory for the ION Java classes, you will need to
copy the classes directory files specified in the section “Manually Configuring
Your Web Server” on page 29 to the new directory. Copying the com directory and
subdirectories to your new directory is optional.

For more on the ION Java class files, see “Supporting Java Archive Files” on
page 103.
ION Java User’s Guide Where to Place HTML and Class Files

54 Chapter 2: Overview
Where to Place HTML and Class Files ION Java User’s Guide

Chapter 3:

Overview of the
ION Java Classes
This chapter provides a high-level overview of the Java classes that make up ION
Java. The following topics are covered in this chapter:

• The ION Java Class Hierarchy

• AWT vs. Swing

• Using the Component Classes
ION Java User’s Guide 55

56 Chapter 3: Overview of the ION Java Classes
The ION Java Class Hierarchy

ION Java consists of three levels of Java classes:

• ION Low-level classes

• ION Component classes

• ION Pre-built Applet classes

The relationship between the ION Java classes is illustrated in Figure 3-1 in the
Unified Modeling Language (UML).

Figure 3-1: The ION Java Classes
The ION Java Class Hierarchy ION Java User’s Guide

Chapter 3: Overview of the ION Java Classes 57
Note
In Figure 3-1, classes that contain Component represent Contour, Map, Plot, and
Surface. For example, IONComponent represents the IONContour, IONMap,
IONPlot, and IONSurface classes.

ION Low-Level Classes

The ION low-level classes are the most basic building blocks of ION applications.
The ION low-level classes are the only classes required to build ION applications
that contain IDL data and graphics output. All other ION Java classes are built on top
of these low-level classes. The ION low-level classes provide a degree of control not
available with the ION Graphics Component classes, but require more sophisticated
Java and IDL programming skills. Each of the ION low-level classes is described
below:

IONCallableClient

IONCallableClient provides mechanisms to handle communication with the server,
execution of IDL commands, retrieving IDL command log output and the getting and
setting of IDL variables on the ION Server. IONCallableClient is the only class
required to write a non-graphical ION application.

IONGraphicsClient

This class provides mechanisms to handle the processing of graphic primitive data
sent from the ION Server. Information sent by the server is read by mechanisms
provided by the parent class IONCallableClient.

IONWindowingClient

This class provides mechanisms to handle the processing of the windowing
commands that are part of an IDL Direct Graphics driver. This includes the creation,
deletion, showing, hiding, and iconization of windows on the client.

IONDrawable

This interface defines the methods that an object must implement to act as an ION
drawable object. An ION drawable is an object that can be drawn to by an
IONGraphicsClient. This interface is implemented as either an IONCanvas or
IONOffScreen object.
ION Java User’s Guide The ION Java Class Hierarchy

58 Chapter 3: Overview of the ION Java Classes
IONGR2Drawable

This interface defines the methods required for a class to be a drawing area for Object
Graphics.

IONCanvas / IONJCanvas

These classes represents a visible drawing area upon which graphics can be
displayed. They implement the ION Drawable interface.

IONOffScreen

This class represents an undisplayed drawing area on which graphic output can be
placed. This implements the ION Drawable interface

IONCommandDoneListener

This interface defines the methods a class must implement to register and to receive
notification that an IDL command has completed.

IONMouseListener (deprecated)

This interface defines the callback methods that a class must define to be notified of
mouse events occurring on an object that implements the IONDrawable interface.
This interface is deprecated in ION 1.4. It is recommended that you use the more
robust Java MouseListener and/or the Java MouseMotionListener.

IONOutputListener

This interface defines the methods that a class must implement to receive ION Server
output text.

IONVariable

This class is a client side representation of an IDL variable. IONVariable objects are
used to read and write data between the IDL server and clients.

IONComplex

This class is the client side representation of IDL’s single-precision complex number.

IONDComplex

This class is the client side representation of IDL’s double-precision complex number.

ION Component Classes

The ION Component classes are a set of high level Java classes that provide a rapid
and powerful way to include IDL graphics in a Java application or Java applet. Built
The ION Java Class Hierarchy ION Java User’s Guide

Chapter 3: Overview of the ION Java Classes 59
on top of the low-level classes, the Component classes encapsulate specific IDL
functionality and provide a simpler interface, which allows you to connect to the ION
Server and display graphics generated by IDL. The component classes are easier to
use than the low-level classes, while providing less flexibility.

IONGrConnection

An IONGrConnection object provides a connection between the ION Server and the
client. In addition to establishing and ending the connection, IONGrConnection
allows you to get and set the values of IDL variables on the ION Server, add and
remove drawable objects to the connection, and execute IDL commands directly. It
also logs server messages automatically, and displays them via
IONGrDrawable/IONJGrDrawable.

IONGrDrawable / IONJGrDrawable

An IONGrDrawable object creates a drawing area that presents graphics produced by
the ION Server. IONGrDrawable allows you to configure the drawing area to draw
one or more objects, add and remove graphic objects from a drawable, and execute
IDL commands directly. An IONGrDrawable also contains a debug window. Objects
of this type can be inserted into the AWT tree. The IONGrDrawable class is the AWT
implementation, and IONJGrDrawable is the Swing implementation.

IONContour / IONJContour

An IONContour object represents a contour graphic and a drawing area. IONContour
allows you to get and set properties of the contour (via keywords to the IDL
CONTOUR routine) and to draw the contour object. IONContour extends
IONGrDrawable and includes an IONGrContour object. IONContour is the AWT
implementation, and IONJContour is the Swing implementation.

IONMap / IONJMap

An IONMap object represents a map graphic and drawing area. IONMap allows you
to get and set map properties (via keywords to the IDL MAP_SET procedure) and to
draw the map. Several other classes can be used with IONMap, including
IONGrMapContinents, IONGrMapGrid, and IONGrMapImage. IONMap extends
IONGrDrawable and includes an IONGrMap object. IONMap is the AWT
implementation, and IONJMap is the Swing implementation.

IONPlot / IONJPlot

An IONPlot object represents a plot and a drawing area. IONPlot allows you to get
and set properties of the plot (via keywords to the IDL PLOT routine) and to draw the
ION Java User’s Guide The ION Java Class Hierarchy

60 Chapter 3: Overview of the ION Java Classes
plot object. IONPlot extends IONGrDrawable and includes an IONGrPlot object.
IONPlot is the AWT implementation, and IONJPlot is the Swing implementation.

IONSurface / IONJSurface

An IONSurface object represents a surface graphic and a drawing area. IONSurface
allows you to get and set properties of the surface (via keywords to the IDL
SURFACE routine) and to draw the surface object. IONSurface extends
IONGrDrawable and includes an IONGrSurface object. IONSurface is the AWT
implementation, and IONJSurface is the Swing implementation.

IONGrGraphic

An IONGrGraphic object provides methods used to manage graphic properties. The
other IONGr objects extend this object. IONGrGraphic allows you to get and set
graphic properties, and to manage property lists for the graphic object.

IONGrContour

An IONGrContour object is a property manager for a contour graphic.
IONGrContour allows you to get and set properties of the contour plot via keywords
to the IDL CONTOUR procedure, but does not contain a drawing area. (Use
IONContour if you want a contour an object and a drawing area managed by a single
object.) IONGrContour extends IONGrGraphic. The IONGr* components are useful
for overlaying graphics on top of one another.

IONGrMap

An IONGrMap object is a property manager for a map graphic. IONGrMap allows
you to get and set the properties of the map via keywords to the IDL MAP_SET
procedure, but does not contain a drawing area. (Use IONMap if you want a map
object and a drawing area managed by a single object.) IONGrMap extends
IONGrGraphic. The IONGr* components are useful for overlaying graphics on top
of one another.

IONGrMapContinents

An IONGrMapContinents object allows you to get and set properties of map outlines
such as continental and political boundaries, coastlines, and rivers.

IONGrMapGrid

An IONGrMapGrid object allows you to get and set properties of map grids to be
drawn on a map projection.
The ION Java Class Hierarchy ION Java User’s Guide

Chapter 3: Overview of the ION Java Classes 61
IONGrMapImage

An IONGrMapImage object allows you to get and set properties of images to be
projected onto a map projection.

IONGrPlot

An IONGrPlot object is a property manager for a plot graphic. IONGrPlot allows you
to get and set properties of the plot via keywords to the IDL PLOT procedure, but
does not contain a drawing area. (Use IONPlot if you want a plot object and a
drawing area managed by a single object.) IONGrPlot extends IONGrGraphic. The
IONGr* components are useful for overlaying graphics on top of one another.

IONGrSurface

An IONGrSurface object is a property manager for a surface graphic. IONGrSurface
allows you to get and set properties of the surface via keywords to the IDL
SURFACE procedure, but does not contain a drawing area. (Use IONSurface if you
want a surface object and a drawing area managed by a single object.) IONGrSurface
extends IONGrGraphic. The IONGr* components are useful for overlaying graphics
on top of one another.

ION Pre-Built Applets

The ION Pre-Built Applets allow you to interact with the ION Server with a
minimum of Java knowledge or experience. Because the applets are pre-built, you
can include them in Web pages using only HTML code.

IONGraphicApplet

The IONGraphicApplet is a general purpose applet that is used to execute a series of
IDL commands and display the results.

IONContourApplet

The IONContourApplet displays an IDL contour plot. The X, Y and Z values of the
plot and most IDL Contour properties supported by ION can be set through
parameters to the applet.

IONMapApplet

The IONMapApplet is an applet that displays 2D data on a map projection. The data
can be displayed as an image or a contour plot and can contain latitude/longitude grid
lines, and landmass and political boundaries. The applet is capable of projecting
multiple contour plots, one image, latitude/longitude grid lines, and boundaries onto
the drawing area.
ION Java User’s Guide The ION Java Class Hierarchy

62 Chapter 3: Overview of the ION Java Classes
IONPlotApplet

The IONPlotApplet displays an IDL plot. The X and Y values of the plot and most
IDL plot properties supported by ION can be set through parameters to the applet.

IONSurfaceApplet

The IONSurfaceApplet displays an IDL Surface plot. The X, Y and Z values of the
plot and most IDL Surface properties supported by ION can be set through
parameters to the applet.
The ION Java Class Hierarchy ION Java User’s Guide

Chapter 3: Overview of the ION Java Classes 63
Using the Component Classes

The ION Component classes have a number of common features. The contour, map,
plot, and surface objects all allow you to set the data values, retrieve and set
properties, and draw the object. See Chapter 6, “ION Java Class and Method
Reference” for a complete list of methods for each class.

Setting Values

The ION Graphics objects that include data all allow you to set the initial data values
when you create the object. You can also reset the data values using the setXValue
/ setYValue / setZValue methods. The set methods enable you to change the
value of the displayed data on the fly without re-creating the object in question.

Getting and Setting Properties

The contour, map, plot, and surface objects can all be modified by changing the value
of a set of properties associated with the objects. The list of properties available for
modification is a subset of the list of properties controlled by keywords to the
corresponding IDL Direct Graphics routine (CONTOUR, MAP_SET, PLOT, or
SURFACE). Consult the IDL Reference Guide for details about the settings for
individual properties.

Drawing

With the exception of the IONGrConnection object, all of the ION component objects
have a draw() method. Calling the draw() method on a given object causes it to be
displayed in the associated drawing area.
ION Java User’s Guide Using the Component Classes

64 Chapter 3: Overview of the ION Java Classes
AWT vs. Swing

Each ION Java component is shipped in two forms—one built on AWT classes, the
other on Swing classes. This section discusses the difference between AWT and
Swing, the advantages and disadvantages of each, and how to distinguish between the
ION AWT classes and the ION Swing classes.

AWT and Swing are both part of a group of Java class libraries called the Java
Foundation Classes (JFC). The Abstract Windowing Toolkit (AWT) is the original
GUI toolkit shipped with the Java Development Kit (JDK). The AWT provides a
basic set of graphical interface components similar to those available with HTML
forms. Swing is the latest GUI toolkit, and provides a richer set of interface
components than the AWT. In addition, Swing components offer the following
advantages over AWT components:

• The behavior and appearance of Swing components is consistent across
platforms, whereas AWT components will differ from platform to platform.

• Swing components can be given their own “look and feel”.

• Swing uses a more efficient event model than AWT, therefore, Swing
components can run more quickly than their AWT counterparts.

On the other hand, Swing components can take longer to load than AWT
components.

ION Applications should use either all AWT-based components, or all Swing-based
components. Mixing AWT and Swing components in the same application can cause
problems with the stacking order of your components.

The ION Swing components can be identified by a “J”. For example, the Swing
version of the IONPlot class is called IONJPlot.

Note
If you use Swing components, you need to define the certain attributes in your
HTML file. This is due to certain browsers not supporting Swing components. For
example:

CODE=com.rsi.ion.IONJPlotApplet.class
CODEBASE="../classes"
ARCHIVE="ion_16.jar, swingall.jar"

If you are not running your Java application through a browser, you need to set
AWT vs. Swing ION Java User’s Guide

Chapter 3: Overview of the ION Java Classes 65
CLASSPATH to include the swingall.jar file.

The swingall.jar file is available from http://java.sun.com.
ION Java User’s Guide AWT vs. Swing

http://java.sun.com

66 Chapter 3: Overview of the ION Java Classes
AWT vs. Swing ION Java User’s Guide

Chapter 4:

Using ION’s Pre-Built
Applets
The simplest way to create an ION Java application is to plug existing ION Java
applets into a Web page. The pre-built applets included with ION Java allow you to
interact with the ION Server with a minimum of Java knowledge or experience.
Because the applets are pre-built, you can include them in Web pages using only
HTML code. This chapter discusses the <APPLET> and <PARAM> tags, describes
how to set up and customize each of ION’s pre-built applets, and provides example
code.

Note
You can use the examples in the chapter directly in your own Web pages by
specifying the appropriate host and port settings for your server, and by specifying
the CODEBASE attribute to reflect the location of the ION class files.
ION Java User’s Guide 67

68 Chapter 4: Using ION’s Pre-Built Applets
The <APPLET> Tag

The HTML <APPLET> tag is used to include Java applets in your HTML code. For
more information on embedding applets into a web page, consult an HTML manual
The syntax of the <APPLET> tag is as follows:

<APPLET
[ALIGN={"left" | "right" |"top" | "middle" | "bottom"}]
[ALT="alternate text"]
[ARCHIVE="zip or jar file"]
CODE="class file"
[CODEBASE="path or URL"]
HEIGHT="height"
[HSPACE="pixels"]
[NAME="name"]
[VSPACE="pixels"]
WIDTH="width" >

</APPLET>

Attributes

The <APPLET> tag takes the following attributes:

ALIGN

ALIGN specifies either the position of the applet in relation to the left and right
borders of the browser, or the alignment of text in relation to the applet:

• LEFT - The applet is aligned with the left border of the browser.

• RIGHT - The applet is aligned with the right border of the browser.

• TOP - Text to the left and right of the applet is aligned with the top edge of the
applet.

• MIDDLE - Text to the left and right of the applet is aligned with the vertical
midpoint of the applet.

• BOTTOM - Text to the left and right of the applet is aligned with the bottom
edge of the applet.

ALT

The ALT attribute specifies a text string to be displayed if for some reason the applet
cannot be loaded. The ALT attribute is not required, but consider adding something
The <APPLET> Tag ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 69
like the following to your applet description to enhance the user-friendliness of your
HTML page:

ALT="ION Applet failed to load. Is Java enabled in your browser?"

Note
If you include HTML-formatted text within your <APPLET> tag, it will be
displayed only if the Java Virtual Machine fails to start. This is slightly different
from the ALT attribute, which contains text to be displayed only if the Java applet
fails to load.

ARCHIVE

The ARCHIVE attribute is not required. However, it is recommended that you
download all of the ION classes as a single package. See “Supporting Java Archive
Files” on page 103 for a discussion of Java archive files.

CODE

A string specifying the name of the applet class. The CODE attribute should specify
the fully-qualified class name relative to the directory in which the HTML file is
located. If the CODEBASE attribute is included, the class name specified in the
CODE attribute should be relative to the directory specified by CODEBASE.

For example, if you were to place an HTML file that used the IONPlotApplet in an
html subdirectory of the ION directory, the CODE, CODEBASE and ARCHIVE
attributes would be:

CODE=com.rsi.ion.IONPlotApplet.class
CODEBASE="../classes"
ARCHIVE="ion_16.jar"

because the IONPlotApplet.class file is located in the com/rsi/ion
subdirectory within the ION .jar file. Similarly, if you were to place all of the Java
class files necessary for your applet in the directory containing your HTML files, you
could omit the CODEBASE attribute and use something like the following:

CODE=MyApplet.class

The CODE attribute is required for all ION applets.

CODEBASE

The CODEBASE attribute is not strictly required, but is often useful. The Java class
loader searches for the contents of the classes directory in current directory — that
is, the directory from which the HTML page containing the <APPLET> tag was
loaded. If you locate the HTML page somewhere other than the IONJava/classes
ION Java User’s Guide The <APPLET> Tag

70 Chapter 4: Using ION’s Pre-Built Applets
directory, you will need to set the CODEBASE attribute to the relative path from the
page location to the classes directory, or to a URL that specifies the location.

For example, if your HTML page is located in a directory called
/rsi/idl56/products/ion16/ion_java/html, you would set the
CODEBASE attribute as follows:

CODEBASE="../classes"

Note
If the CODEBASE attribute is set equal to a URL, then the host specified by the
URL can be used for ION network connections, but the host that is serving the
HTML page cannot. This allows you to set up the ION Server and all of the ION
class files on a machine separate from your web server, provided you include the
SERVER_NAME parameter with the same hostname as in the CODEBASE URL.
If you use this method, both the CODEBASE and SERVER_NAME attributes must
refer to the same machine or Java security errors will result. In addition, the ION
Server machine will still need to run a web server, but it will only be used to get the
.class (or archive) files for the applets.

HEIGHT

The height of the applet in pixels. ION uses the HEIGHT attribute when creating the
drawing area. This attribute is required for all ION applets.

HSPACE

The amount of white space to the left and right of the applet, in pixels.

NAME

A string containing a unique name for the applet. The string should be enclosed in
double quotes marks. This attribute is required for all ION applets.

WIDTH

The width of the applet in pixels. ION uses the WIDTH attribute when creating the
drawing area. This attribute is required for all ION applets.

VSPACE

The amount of white space on the top and bottom of the applet, in pixels.

Example

The following <APPLET> tag creates an applet of the IONGraphicApplet class, with
a drawing area 100 pixels by 100 pixels, with the name “MyApplet.” The HTML
The <APPLET> Tag ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 71
page containing the applet code is assumed to be located in the directory
/rsi/idl56/products/ion16/classes, so no CODEBASE attribute is
included.

<APPLET NAME="MyApplet" WIDTH=100 HEIGHT=100
CODE=com.rsi.ion.IONGraphicApplet.class

<!- Other applet code >
</APPLET>

Supporting Java-Incapable Browsers

You can include HTML text within an applet tag, but the text will only be displayed if
the Java virtual machine fails to start. You may find it useful to include something
like the following:

<APPLET attributes>
<!-- Applet code -->
Java virtual machine failed to start.
Is Java enabled in your browser?

</APPLET>

People with browsers that do not support Java would see the text:

Java virtual machine failed to start. Is Java enabled on your browser?

while those with browsers that do support Java would see only the applet.
ION Java User’s Guide The <APPLET> Tag

72 Chapter 4: Using ION’s Pre-Built Applets
Parameters Specified via <PARAM> Tags

The HTML <PARAM> tag is more like an attribute of the <APPLET> tag than a
separate HTML tag. Although it is a tag, it is valid only inside an <APPLET> tag (or
an <OBJECT> tag). It functions to pass parameters to the applet. This section
discusses parameters common to all ION Applets. Parameters specific to individual
applets included in the ION package are discussed in the applet-specific sections
below.

The syntax of the <PARAM> tag is as follows:

<PARAM NAME="name" VALUE="value">

The NAME attribute can be set to one of the following parameters:

Connecting to the ION Server

Before IDL commands can be executed and graphics created, the ION applet must
connect to the ION Server. Establish a connection by including the following
connection parameters in the HTML code that creates the applet.

SERVER_NAME

Set this value of this parameter equal to the name of the computer on which the ION
Server is running. The server name can be either a simple host name (i.e. myhost) or
a fully-qualified domain name (i.e. myhost.mycompany.com). Java security
mechanisms require that the applet be located on the same machine as the ION
Server. If the server name is not provided, the host name of the machine from which
the applet was loaded is used.

PORT_NUMBER

The port number of the port on the server where the ION Daemon is listening. By
default, the ION Server listens to port 7085.

SERVER_DISCONNECT

Set the value of this parameter equal to "YES" if you want the applet to disconnect
from the server when all commands have been processed. (Note that if more than one
applet is using the connection, the connection will not be closed until all commands
from all of the connected applets have been completed.) The default value is "NO".
Parameters Specified via <PARAM> Tags ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 73
CONNECTION_TYPE

Set the value of this parameter to specify what type of connection ION should use.
The three possible values are:

• HTTP_CON — Make only HTTP connections, using the ION HTTP Tunnel
Broker.

• SOCK_CON — Make only socket connections, using only the ION Daemon.

• BEST_CON — Attempt to make a socket connection. If a socket connection
is not possible, attempt to make an HTTP connection. This is the default
setting.

See “Configuring The ION HTTP Tunnel Broker” on page 31 for additional details
about HTTP connections.

CONNECTION_TIMEOUT

Set the value of this parameter to an integer number of seconds to wait before
assuming that a socket connection has failed. If the CONNECTION_TYPE
parameter is set to BEST_CON, ION will attempt to make an HTTP connection if the
timeout time expires before a socket connection is made.

HTTP_HOSTNAME

Set the value of this parameter equal to the hostname of the computer on which the
ION HTTP Tunnel Broker is running.

HTTP_PORT

Set the value of this parameter equal to the port number the ION HTTP Tunnel
Broker is listening to.

Example

The following connects the “MyApplet” applet to a server named “Server1”, using
the default port number, the default connection type, and specifies that the applet
should not disconnect from the server when all commands have been processed:

<APPLET NAME="MyApplet" WIDTH=100 HEIGHT=100
CODE=com.rsi.ion.IONGraphicApplet.class>
ARCHIVE="ion_16.zip"
CODEBASE=../classes>
<PARAM NAME="SERVER_NAME" VALUE="Server1">
<PARAM NAME="SERVER_DISCONNECT" VALUE="NO">

<!-- Other applet code -->
</APPLET>
ION Java User’s Guide Parameters Specified via <PARAM> Tags

74 Chapter 4: Using ION’s Pre-Built Applets
Using the Same Connection for Multiple Applets

Multiple ION applets can share a single connection to the ION Server. Since each
open connection consumes network bandwidth, it is often efficient to let several
applets share the same connection.

To specify an existing connection for a new applet, use the
ION_CONNECTION_NAME parameter rather than the SERVER_NAME,
PORT_NUMBER, and SERVER_DISCONNECT parameters.

Note
All applets using the same connection must be loaded into the browser at the same
time. In general, this means that applets that share a connection should be included
in the same HTML page.

ION_CONNECTION_NAME

Set the value of this parameter equal to the name of the applet whose connection you
wish to share. The applet’s name is specified by the NAME attribute in the APPLET
tag.

Example

The following creates a second applet named “AnotherApplet” and specifies that it
share the server connection created for “MyApplet”:

<APPLET NAME="AnotherApplet" WIDTH=100 HEIGHT=100
CODE=com.rsi.ion.IONGraphicApplet.class
ARCHIVE="ion_16.zip"
CODEBASE=../classes>
<PARAM NAME="ION_CONNECTION_NAME" VALUE="MyApplet">

<!-- Other applet code -->
</APPLET>

Behavior Parameters

Two behavior parameters determine how an applet responds to certain user actions.
The two behaviors currently supported by all ION applets allow the applets to display
debug information and link to other HTML pages. Use the following parameters to
alter the behavior of pre-built applets:

DEBUG_MODE

If the value of this parameter is set to “YES”, holding down the shift key and clicking
the mouse in the applet drawing area displays a window containing the IDL
commands and server responses associated with the applet’s connection. If more than
Parameters Specified via <PARAM> Tags ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 75
one applet is connected to the connection, the information for all applets is displayed.
If the main connection has DEBUG_MODE set to “NO” (or not specified), but an
applet connected to it has DEBUG_MODE turned on, debug will be turned on for the
entire connection. The default value is “NO.”

LINK_URL

Set the value of this parameter to a URL that will be loaded if the user clicks in the
applet area. The switch to the linked URL happens before any mouse events are
passed to the server. This option should not be used with ION applets running IDL
routines that accept mouse input.

Example

The following specifies that the “MyApplet” applet will display debug information
and will link to the Research Systems web page if the user clicks in the applet
drawing area:

<APPLET NAME="MyApplet" WIDTH=100 HEIGHT=100
CODE=com.rsi.ion.IONGraphicApplet.class
ARCHIVE="ion_16.zip"
CODEBASE=../classes>
<PARAM NAME="SERVER_NAME" VALUE="Server1">
<PARAM NAME="SERVER_DISCONNECT" VALUE="NO">
<PARAM NAME="DEBUG_MODE" VALUE="YES">
<PARAM NAME="LINK_URL" VALUE="http://www.researchsystems.com">

<!-- Other applet code -->
</APPLET>
ION Java User’s Guide Parameters Specified via <PARAM> Tags

76 Chapter 4: Using ION’s Pre-Built Applets
IONGraphicApplet

The IONGraphicApplet is used to execute a series of IDL commands and display the
results. Any valid IDL commands that are not explicitly excluded by the ION security
mechanism (see “Command Security” on page 34) can be passed to the
IONGraphicApplet for execution. Using the ION Applet parameters, the Applet can
also display debug information and be used as a hyperlink to another HTML page.

The IDL commands can be sent synchronously or asynchronously. By default, each
command is sent and the client blocks (stops accepting commands) until the
command is complete. However, in some circumstances the client needs to regain
control of the application immediately to be able to process user input. An example of
this situation would be when a command starts an IDL routine that requires a large
amount of processing. If the command is blocking, the client will not be free to
receive user input or possibly even redraw itself.

Parameters

In addition to the parameters described in “Parameters Specified via <PARAM>
Tags” on page 72, the IONGraphicsApplet accepts the following parameters:

IDL_COMMAND_0, ..., IDL_COMMAND_n

The IDL_COMMAND_* parameters specify the IDL commands to send to the ION
Server. The value of each IDL_COMMAND is a valid, single line IDL command (the
“$” line continuation is not supported by ION). Note that commands that are
explicitly excluded via the ION security mechanism are not processed.

Note
Command numbers must be continuous, beginning with zero and ending with n.

AYSNC_COMMANDS

Set the value of this parameter to “YES” if the client should send commands
asynchronously. All commands are sent in order, and control is returned to the applet
as soon as the commands are sent. The default value is “NO”.

DECOMPOSED_COLOR

If set to “YES”, the applet will treat pixel values as RGB triplets when on a true-color
(24-bit or 32-bit) device. (This is the default.) If set to “NO”, the applet will treat the
first eight bits (the red portion) of the pixel value as an index into the current color
table when displaying on a true color device. For more information on decomposed
IONGraphicApplet ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 77
color mode, see the documentation for the DECOMPOSED keyword to the DEVICE
procedure in the IDL Reference Guide.

Example

The following example creates an IONGraphicsApplet that connects to a server,
generates some data, sets the color table, and displays the data using IDL’s SHOW3
procedure. In the example, debugging mode is enabled, and the applet drawing area is
a link to the Research Systems Web page.

<APPLET NAME="CONNECTION" CODE=IONGraphicApplet.class
WIDTH=200 HEIGHT=200
ARCHIVE="ion_16.zip"
CODEBASE=../classes>

<!-- This applet connects to host KIROC, port 8084 -->
<PARAM NAME="SERVER_NAME" VALUE="KIROC">
<PARAM NAME="PORT_NUMBER" VALUE="8084">
<PARAM NAME="LINK_URL" VALUE="http://www.researchsystems.com">
<PARAM NAME="DEBUG_MODE" VALUE="YES">
<PARAM NAME="SERVER_DISCONNECT" VALUE="YES">
<PARAM NAME="IDL_COMMAND_0"

VALUE="a = exp(-(shift(dist(30), 15, 15)/7)^2)">
<PARAM NAME="IDL_COMMAND_1" VALUE="loadct, 1">
<PARAM NAME="IDL_COMMAND_2" VALUE="show3, a">

</APPLET>
ION Java User’s Guide IONGraphicApplet

78 Chapter 4: Using ION’s Pre-Built Applets
IONContourApplet

The IONContourApplet displays an IDL contour plot. The X, Y and Z values of the
plot and any IDL Contour properties supported by ION can be set through parameters
to the applet.

Note
You can also create contour plots using the IONGraphicApplet, specifying the
contour properties in IDL command strings. The IONContourApplet is merely a
simplified way to display contour plots.

Parameters

In addition to the parameters described in “Parameters Specified via <PARAM>
Tags” on page 72, the IONContourApplet accepts the following parameters:

X_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
vector or two-dimensional array specifying the X coordinates for the contour surface.
If X_VALUES specifies a vector, each element specifies the X coordinate for a
column in the Z_VALUES array(e.g., X[0] specifies the X coordinate for Z[0,*]). If
X_VALUES specifies a two-dimensional array, each element specifies the X
coordinate of the corresponding point in the Z_VALUES array.

Y_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
vector or two-dimensional array specifying the Y coordinates for the contour surface.
If Y_VALUES specifies a vector, each element specifies the Y coordinate for a
column in the Z_VALUES array(e.g., Y[0] specifies the Y coordinate for Z[0,*]). If
Y_VALUES specifies a two-dimensional array, each element specifies the Y
coordinate of the corresponding point in the Z_VALUES array.

Z_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
one- or two-dimensional array containing the values that make up the contour
surface. If the X_VALUES and Y_VALUES parameters are provided, the contour is
plotted as a function of the (X, Y) locations specified by their contents. Otherwise,
the contour is generated as a function of the two-dimensional array index of each
element of Z_VALUES.
IONContourApplet ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 79
contour_property_1, ..., contour_property_n

Here, contour_property_* is the name of a contour property supported by the
IONGrContour class. Properties for the IONContourApplet reflect the capabilities
implemented in keywords to the IDL CONTOUR procedure.

Note
Unlike the IONGraphicApplet IDL_COMMAND_* parameter, the
contour_property parameters are not numbered.

The following IDL Contour properties are supported by IONContourApplet. Refer to
the IDL documentation on keywords available for use with the CONTOUR
procedure for an explanation of each property:

C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, CLOSED, DOWNHILL, FILL, CELL_FILL,
FOLLOW, IRREGULAR, LEVELS, NLEVELS, OVERPLOT, BACKGROUND,
CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP,
NODATA, NOERASE, NORMAL, POSITION, SUBTITLE, T3D, TICKLEN,
TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR, XLOG, YNOZERO,
YLOG, XCHARSIZE, YCHARSIZE, ZCHARSIZE, XGRIDSTYLE,
YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN, ZMARGIN, XMINOR,
YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE, YSTYLE,
ZSTYLE, XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN,
YTICKLEN, ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS,
YTICKS, ZTICKS, XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE,
ZVALUE, ZAXIS

Example

The following example creates an IONContourApplet that connects to the same
server used by the “Connection” applet defined in the IONGraphicApplet example.
The applet generates some data for the Z value of the contour, and sets the “Title”
property of the contour plot.

<APPLET NAME="CONTOUR" CODE=IONContourApplet.class
WIDTH=200 HEIGHT=200
ARCHIVE="ion_16.zip"
CODEBASE=../classes>
<!-- This applet uses the applet 'CONNECTION' to connect

to the server -->
<PARAM NAME="ION_CONNECTION_NAME" VALUE="CONNECTION">
<PARAM NAME="Z_VALUES" VALUE="exp(-(shift(dist(30), 15,

15)/7)^2)">
<PARAM NAME="TITLE" VALUE="Contour">

</APPLET>
ION Java User’s Guide IONContourApplet

80 Chapter 4: Using ION’s Pre-Built Applets
Note that the example uses an IDL expression to generate the Z values for the
contour. The Z values could also have been specified as an IDL array, with a
statement like:

<PARAM NAME="Z_VALUES"
VALUE="[[1,2,3,4][2,3,4,5][3,4,5,6][4,5,6,7]]">
IONContourApplet ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 81
IONMapApplet

The IONMapApplet is an applet that displays 2D data on a map projection. The data
can be displayed as an image or a contour plot and can contain latitude/longitude grid
lines, and landmass and political boundaries. The applet is capable of projecting
multiple contour plots, one image, latitude/longitude grid lines, and boundaries onto
the drawing area. In the case of multiple datasets, the drawing order is as follows:

• Images are always drawn first

• Any ordering of the following:

• Grid Lines (drawn once)

• Boundaries (continents, drawn once)

• Contours (in numerical order)

The IONMapApplet is based on the ION[Gr]Map* and IONGrContour objects.

Note
You can also create plots using the IONGraphicApplet, specifying the map
properties in IDL command strings. The IONMapApplet is merely a simplified way
to display maps.

Parameters

In addition to the standard IONApplet parameters, the IONMapApplet accepts the
following parameters:

IDL_COMMAND_n

A set of IDL commands starting with n=0 that are executed before the map
commands

MAP_GRID

Display latitude/longitude lines on the map

MAP_CONT

Display continents on the map

MAP_[LAT,LON]

Center of the map
ION Java User’s Guide IONMapApplet

82 Chapter 4: Using ION’s Pre-Built Applets
MAP_ROTATION

Rotation of the map

MAP_*

Keywords accepted by IONGrMap

MAP_GRID_*

Keywords accepted by IONGrMapGrids (valid if MAP_GRID is set)

MAP_CONT_*

Keywords accepted by IONGrContinents (valid if MAP_CONT is set)

MAP_IMAGE_DATA

An IDL statement that evaluates to a 2D dataset that is used as the image data

MAP_IMAGE_*

Keywords accepted by IONGrMapImage (valid if MAP_IMAGE_DATA is set)

MAP_CONTOURn_*

Keywords accepted by the IONContourApplet. n identifies the contour to which the
keyword is applied. The applet starts processing at MAP_CONTOUR1 and continues
sequentially until no more contours are encountered.

MAP_DISP_ORDER

Specifies the order that the data sets are displayed on the map. Valid orders are as
follows (CTR = contour, CT = continents, GR = grid lines):

• CTR_CT_GR, GTR_GR_CT

• CT_CTR_GR, CT_GR_CTR

• GR_CTR_CT, GR_CT_CTR

The following IDL MAP_SET properties are supported by IONMapApplet. Refer to
the IDL documentation on keywords available for use with the MAP_SET procedure
for an explanation of each property:

Projection Types: AITOFF, ALBERS, AZIMUTHAL, CONIC, CYLINDRICAL,
GNOMIC, GOODESHOMOLOSINE, HAMMER, LAMBERT, MERCATOR,
MILLER, MOLLEWIDE, ORTHOGRAPHIC, ROBINSON, SATELLITE,
SINUSOIDAL, STEREOGRAPHIC, TRANSVERSE_MERCATOR
IONMapApplet ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 83
Map Characteristics: ADVANCE, CHARSIZE, CLIP, COLOR, CONTINENTS,
CON_COLOR, HIRES, E_CONTINENTS, E_GRID, E_HORIZON,
GLINESTYLE, GLINETHICK, GRID, HORIZON, LABEL, LATALIGN, LATDEL,
LATLAB, LONDEL, LONLAB, MLINESTYLE, MLINETHICK, NOBORDER,
NOERASE, TITLE, USA, XMARGIN, YMARGIN

Projection Parameters: CENTRAL_AZIMUTH, ELLIPSOID, ISOTROPIC,
LIMIT, SAT_P, SCALE, STANDARD_PARALLELS

Graphics: POSITION, T3D, ZVALUE
ION Java User’s Guide IONMapApplet

84 Chapter 4: Using ION’s Pre-Built Applets
IONPlotApplet

The IONPlotApplet displays an IDL plot. The X and Y values of the plot and any
IDL plot properties supported by ION can be set through parameters to the applet.

Note
You can also create plots using the IONGraphicApplet, specifying the plot
properties in IDL command strings. The IONPlotApplet is merely a simplified way
to display plots.

Parameters

In addition to the parameters described in “Parameters Specified via <PARAM>
Tags” on page 72, the IONPlotApplet accepts the following parameters:

X_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
vector of X data. If X_VALUES is not specified, the data in Y_VALUES is plotted as a
function of point number (starting at zero). If both arguments are provided,
Y_VALUES is plotted as a function of X_VALUES.

Y_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
vector of Y data.

plot_property_1, ..., plot_property_n

Here, plot_property_* is the name of a plot property supported by the IONGrPlot
class. Properties for the IONPlotApplet reflect the capabilities implemented in
keywords to the IDL PLOT procedure.

Note
Unlike the IONGraphicApplet IDL_COMMAND_* parameter, the plot_property
parameters are not numbered.

The following IDL Plot properties are supported by IONPlotApplet. Refer to the IDL
documentation on keywords available for use with the PLOT procedure for an
explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT,
LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION, PSYM,
IONPlotApplet ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 85
SUBTITLE, SYMSIZE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE,
NSUM, POLAR, XLOG, YNOZERO, YLOG, ZLOG

Example

The following example creates an IONPlotApplet that connects to the same server
used by the “Connection” applet defined in the IONGraphicApplet example. The
applet generates some data for the X value of the plot, and sets the “Title” and
“Linestyle” properties of the plot.

<APPLET NAME="PLOT" CODE=IONPlotApplet.class
WIDTH=200 HEIGHT=200
ARCHIVE="ion_16.zip"
CODEBASE=../classes>

<!-- This applet uses the applet 'CONNECTION' to connect
to the server -->

<PARAM NAME="ION_CONNECTION_NAME" VALUE="CONNECTION">
<PARAM NAME="LINK_URL" VALUE="plotappletsrc.html">
<PARAM NAME="X_VALUES" VALUE="exp(-(shift(dist(30), 15,

15)/7)^2)">
<PARAM NAME="TITLE" VALUE="Plot">
<PARAM NAME="LINESTYLE" VALUE="2">

</APPLET>
ION Java User’s Guide IONPlotApplet

86 Chapter 4: Using ION’s Pre-Built Applets
IONSurfaceApplet

The IONSurfaceApplet displays an IDL Surface plot. The X, Y and Z values of the
plot and any IDL Surface properties supported by ION can be set through parameters
to the applet.

Note
You can also create surface plots using the IONGraphicApplet, specifying the plot
properties in IDL command strings. The IONSurfaceApplet is merely a simplified
way to display surface plots.

Parameters

In addition to the parameters described in “Parameters Specified via <PARAM>
Tags” on page 72, the IONSurfaceApplet accepts the following parameters:

X_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
vector or two-dimensional array specifying the X coordinates for the surface. If
X_VALUES specifies a vector, each element specifies the X coordinate for a column
in the Z_VALUES array(e.g., X[0] specifies the X coordinate for Z[0,*]). If
X_VALUES specifies a two-dimensional array, each element specifies the X
coordinate of the corresponding point in the Z_VALUES array.

Y_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
vector or two-dimensional array specifying the Y coordinates for the surface. If
Y_VALUES specifies a vector, each element specifies the Y coordinate for a column
in the Z_VALUES array(e.g., Y[0] specifies the Y coordinate for Z[0,*]). If
Y_VALUES specifies a two-dimensional array, each element specifies the Y
coordinate of the corresponding point in the Z_VALUES array.

Z_VALUES

Set the value of this parameter equal to a valid IDL expression that evaluates to a
one- or two-dimensional array containing the values that make up the surface. If the
X_VALUES and Y_VALUES parameters are provided, the contour is plotted as a
function of the (X, Y) locations specified by their contents. Otherwise, the surface is
generated as a function of the two-dimensional array index of each element of
Z_VALUES.
IONSurfaceApplet ION Java User’s Guide

Chapter 4: Using ION’s Pre-Built Applets 87
surface_property_1, ..., surface_property_n

Here, surface_property_* is the name of a surface property supported by the
IONGrSurface class. Properties for the IONSurfaceApplet reflect the capabilities
implemented in keywords to the IDL SURFACE procedure.

Note
Unlike the IONGraphicApplet IDL_COMMAND_* parameter, the
surface_property parameters are not numbered.

The following IDL Surface properties are supported by the IONSurfaceApplet. Refer
to the IDL documentation on keywords available for use with the SURFACE
procedure for an explanation of each property:

AX, AZ, BOTTOM, HORIZONTAL, LEGO, LOWER_ONLY, SAVE, SHADES,
UPPER_ONLY, ZAXIS, BACKGROUND, CHARSIZE, CLIP, COLOR, DATA,
DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL,
POSITION, SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE,
NSUM, POLAR, XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE,
ZCHARSIZE, XGRIDSTYLE, YGRIDSTYLE, ZGRIDSTYLE, XMARGIN,
YMARGIN, ZMARGIN, XMINOR, YMINOR, ZMINOR, XRANGE, YRANGE,
ZRANGE, XSTYLE, YSTYLE, ZSTYLE, XTICKFORMAT, YTICKFORMAT,
ZTICKFORMAT, XTICKLEN, YTICKLEN, ZTICKLEN, XTICKNAME,
YTICKNAME, ZTICKNAME, XTICKS, YTICKS, ZTICKS, XTICKV, YTICKV,
ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE, ZLOG

Example

The following example creates an IONSurfaceApplet that connects to the same server
used by the “Connection” applet defined in the IONGraphicApplet example. The
applet generates some data for the Z value of the plot, and sets the “Title” and “Lego”
properties of the plot.

<APPLET NAME="SURFACE" CODE=IONSurfaceApplet.class
WIDTH=200 HEIGHT=200
ARCHIVE="ion_16.zip"
CODEBASE=../classes>

<!-- This applet uses the applet 'CONNECTION' to connect
to the server -->

<PARAM NAME="ION_CONNECTION_NAME" VALUE="CONNECTION">
<PARAM NAME="LINK_URL" VALUE="surfaceappletsrc.html">
<PARAM NAME="Z_VALUES" VALUE="exp(-(shift(dist(30), 15,
15)/7)^2)">
<PARAM NAME="TITLE" VALUE="Surface">
<PARAM NAME="LEGO" VALUE="1">

</APPLET>
ION Java User’s Guide IONSurfaceApplet

88 Chapter 4: Using ION’s Pre-Built Applets
IONSurfaceApplet ION Java User’s Guide

Chapter 5:

Building ION Applets
and Applications
This chapter discusses the process of building your own ION Java applets and
standalone Java applications. Details on the ION Java classes used to build ION
applets and applications can be found in Chapter 3, “Overview of the ION Java
Classes” and Chapter 6, “ION Java Class and Method Reference”. The following
topics are discussed:

• Direct Graphics in ION

• Object Graphics in ION

• Compiling .java Files

• Error Handling and ION Exceptions

• Debug Mode

• Converting Between IDL and Java Bytes

• Considerations Specific to ION Applets
ION Java User’s Guide 89

90 Chapter 5: Building ION Applets and Applications
Direct Graphics in ION

The ION Device

IDL uses the concept of a current graphics device when creating and displaying IDL
Direct Graphics. When the ION Server requests graphics from IDL, it automatically
sets the current graphics device to 'ion'; graphics output from IDL is sent directly
to the ION Server. You do not need to explicitly set the graphics device to 'ion'

unless you have explicitly used the IDL SET_PLOT procedure to change the current
device to some other device.

For example, suppose you wish to include a “Print” button in a Java application. Your
applet might include something like the following:

ion.executeIDLCommand("SET_PLOT, 'printer'")
execute more IDL commands to draw an image on the printer
ion.executeIDLCommand("SET_PLOT, 'ion'")

Note
The IDL TVRD function is not supported by the ION Device.

Keywords Accepted by the ION Device

The following keywords to the IDL DEVICE routine are available when the current
graphics device is set to 'ion'. Except where indicated, keywords to the ION device
work just as they do for other IDL graphics devices.

COPY

Use this keyword to copy a rectangular area of pixels from one region of a window to
another. COPY should be set to a six or seven element array: [Xs, Ys, Nx, Ny, Xd, Yd,
W], where: (Xs, Ys) is the lower left corner of the source rectangle, (Nx, Ny) are the
number of columns and rows in the rectangle, and (Xd, Yd) is the coordinate of the
destination rectangle. Optionally, W is the index of the window from which the pixels
should be copied to the current window. If it is not supplied, the current window is
used as both the source and destination.

DECOMPOSED

This keyword is used to control the way in which graphics color index values are
interpreted when using displays with decomposed color (TrueColor visuals). This
keyword has no effect with other types of visuals.
Direct Graphics in ION ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 91
Set this keyword to 1 to cause color indices to be interpreted as 3, 8-bit color indices
where the least-significant 8 bits contain the red value, the next 8 bits contain the
green value, and the most-significant 8 bits contain the blue value. This is the way
IDL has always interpreted pixels when using visual classes with decomposed color.

Set this keyword to 0 to cause the least-significant 8 bits of the color index value to
be interpreted as a PseudoColor index. This setting allows users with TrueColor
displays to use IDL programs written for standard, PseudoColor displays without
modification.

In older versions of IDL, color index values higher than !D.N_COLORS-1 were
clipped to !D.N_COLORS-1 in the higher level graphics routines. In some cases, this
clipping caused the exclusive-OR graphics mode to malfunction with raster displays.
This clipping has been removed. Programs that incorrectly specified color indices
higher than !D.N_COLORS-1 will now probably exhibit different behavior.

FONT

Set this keyword to a scalar string specifying the name of the font used when the
hardware font is selected.

Note
The hardware fonts available are supplied by Java itself, not the platform on which
IDL is running. Java’s font system supplies several standard fonts. These font
names will map to different actual fonts on different platforms, but will always be
handled gracefully by Java. If you specify a different font, Java will substitute one
of the standard fonts automatically.

Tip
Avoid using device fonts for performance reasons. See “Tips for Increasing
Execution Speed in ION Java” on page 45.

Note that hardware fonts cannot be rotated, scaled, or projected, and that the “!”
commands accepted for vector fonts for subscripts and superscripts may not work.
When generating three-dimensional plots, it is best to use the vector-drawn characters
because IDL can draw them in perspective with the rest of the plot.

The GET_FONTNAMES keyword, described below, can be used to retrieve a list of
available fonts.

The FONT keyword should be set to a string with the following form:

DEVICE, FONT="font*modifier1*modifier2*...modifiern"
ION Java User’s Guide Direct Graphics in ION

92 Chapter 5: Building ION Applets and Applications
where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font size: Any number is interpreted as the point size of the font to use.

• For font weight: PLAIN, BOLD

• For font angle: ITALIC

For example, the following commands tell ION to use TrueType fonts, change the
font, and then make a simple plot:

ion.executeIDLCommand("!P.FONT = 1")
ion.executeIDLCommand("DEVICE, FONT = 'Helvetica Bold Italic,
/TT_FONT'")
ion.executeIDLCommand("PLOT, FINDGEN(10), TITLE = 'IDL Plot'")

GET_CURRENT_FONT

Set this keyword to a named variable in which the name of the current font is returned
as a scalar string.

GET_FONTNAMES

Set this keyword to a named variable in which a string array containing the names of
available fonts is returned. If no fonts are found, a null scalar string is returned. This
keyword must be used in conjunction with the FONT keyword. Set the FONT
keyword to a scalar string containing the name of the desired font or a wildcard.

GET_GRAPHICS_FUNCTION

Set this keyword to a named variable that returns the value of the current graphics
function (which is set with the SET_GRAPHICS_FUNCTION keyword). This can
be used to remember the current graphics function, change it temporarily, and then
restore it. See the SET_GRAPHICS_FUNCTION keyword for an example.

GET_SCREEN_SIZE

Set this keyword to a named variable in which to return a two-word array that
contains the width and height of the server’s screen, in pixels.

SET_CHARACTER_SIZE

The standard size and vertical spacing of vector-drawn fonts can be changed by
specifying this keyword with a two-element vector. The first element specifies the
new character width and thus the height of the characters (because vector-drawn fonts
have a fixed aspect ratio). The second element specifies the vertical distance between
Direct Graphics in ION ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 93
lines. The default produces a character that is approximately 8 pixels wide, with 12
pixels between lines.

SET_GRAPHICS_FUNCTION

Most window systems allow applications to specify the graphics function. This is a
logical function which specifies how the source pixel values generated by a graphics
operation are combined with the pixel values already present on the screen. ION
supports only the following two of the fifteen graphics functions supported by IDL
Direct Graphics:

The default graphics function is GXcopy, which causes new pixels to completely
overwrite any previous pixels. Not all functions are available on all window systems.

See “IDL Graphics Devices” in the IDL Reference Guide for more information about
how IDL handles graphics devices.

Logical Function Code Definition

GXcopy 3 source

GXxor 6 source XOR destination
ION Java User’s Guide Direct Graphics in ION

94 Chapter 5: Building ION Applets and Applications
Object Graphics in ION

To render IDL Object Graphics in ION Java, you use the following general
technique:

1. Create the IDL objects

2. Create an off-screen buffer (an IDLgrBuffer object)

3. Draw the object to the buffer, then read the contents of the buffer as an image

4. TV the image to the ION device

The following example demonstrates this technique.

First, create your IDL graphic objects, contained in the proper object
hierarchy (model and view):

oView=obj_new('IDLgrView', COLOR=[255,255,255])
oModel=obj_new('IDLgrModel')
oText=obj_new('IDLgrText', 'Hello World', COLOR = [255,0,0])
oModel->Add, oText
oView->Add, oModel

Then, create an off-screen buffer object to which to draw in IDL. Match the
dimensions of the ION drawable. For example, suppose your .java file contains the
following method:

public void buildGUI()
{

c_ionDrw = new IONGrDrawable(400,400);

setLayout(new FlowLayout());
add(c_ionDrw);

}

In the above code, the IONGrDrawable is defined with dimensions of (400, 400).
Therefore, you would create the IDLgrBuffer object in IDL as follows:

oBuffer=obj_new('IDLgrBuffer',DIMENSIONS=[400,400])

Next, draw the object to your buffer object:

oBuffer->Draw, oView

Then get the image object from the buffer:

oImage=oBuffer->Read()

Now extract the data:

oImage->Getproperty, DATA=image
Object Graphics in ION ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 95
Make sure to destroy the image object since it is no longer needed:

OBJ_DESTROY, oImage

Next, convert the TrueColor image to 8-bit to reduce the bandwidth required to send
it to the client:

result=COLOR_QUAN(image,1,r,g,b)

Load the color table:

TVLCT,r,g,b

Lastly, TV the image:

TV, result

The image is then displayed in the current ION Java drawable.

Note
For a similar but slightly more complex version of this example, click the Object
Graphics link on the page advanced.html. The Java source code resides in
objgraphics.java in the idl56\products\ion16\ion_java\
examples\src directory. The IDL create_surface.pro in the examples
directory contains a "draw_buffer" procedure that illustrates the coding routine
shown above.

Using Object References

When we initially create an object, we get back a reference to that object. Since the
IDL session is persistent in ION Java, we can use object references later in event
callbacks for the applet. It is not necessary to create Java variables for persistence
because the object continues to exist in the persistent IDL session. For instance, you
could add a button to our Hello World applet to rotate the text. In the event callback
for the button, you would call the rotate method on the model object whose reference
you obtained initially. Then you would use the buffer technique to redraw the view.
ION Java User’s Guide Object Graphics in ION

96 Chapter 5: Building ION Applets and Applications
Compiling .java Files

Keep the following points in mind when you compile the .java file that contains
your applet or application code.

Setting the Class Path

When you compile an ION applet or application, the ION class files must be in the
Java compiler’s class path. Since ION is a package, the class files are stored in a
directory structure. The ION class files are located in the following ION installation
subdirectory of the classes directory:

Root_ION/com/rsi/ion

Where Root_ION indicates the path to the classes directory. If you have installed
ION in the default directory, Root_ION would be:

On UNIX:
/usr/local/rsi/ion_1.6/ion_java/classes

On Windows:
C:\rsi\idl56\products\ion16\ion_java\classes

Depending on your specific Java compiler, this can be accomplished by defining the
system CLASSPATH environment variable. See “Setting the Class Path Environment
Variable” on page 97 for more information. However, the recommended method is to
specify the class path on the command line when you are compiling your program.
See the following section for more information.

Setting the Class Path When Compiling

Because browsers react differently to a class path system definition, another way to
specify the class path is to specify the ION path on the command line when you
compile your Java program. If you have installed ION in the default directory, this
might be similar to one of the following:

On UNIX:
javac -classpath ".;/usr/local/rsi/ion_1.6/ion_java/classes"

myIonApp.java

On Windows:
javac -classpath "C:\rsi\idl56\products\ion16\ion_java\classes"

myIonApp.java

This method of specifying the class path has the added benefit of simulating the same
environment that your clients will experience when running your application from
your browser. This method does not rely on having a system environment variable
Compiling .java Files ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 97
pointing to the ION classes directory, something your clients are unlikely to have
defined.

Setting the Class Path Environment Variable

To define the CLASSPATH environment variable, you would set it using the
following shell command on UNIX:

setenv CLASSPATH ".;/usr/local/rsi/ion_1.6/ion_java/classes"

or modify the class path environment variable in the System Environment dialog on
Windows. The Java compiler will add the com/rsi/ion portion of the path when it
looks for the package.

Once the CLASSPATH is set, you can compile your code with a shell command like
the following:

javac myIONApp.java

where myIONApp is the name of your applet or application.

Warning
If you are running the client and the server on the same machine, setting the system
CLASSPATH environment variable can result in errors similar to the following,
appearing in your browser’s Java console:

Netscape Java Console — #Applet exception:
error.java.lang.ClassFormatError:class already loaded

IE Java Console — Error getting package information: com/rsi/ion
To avoid such errors, specify the class path when compiling as described in the
previous section.
ION Java User’s Guide Compiling .java Files

98 Chapter 5: Building ION Applets and Applications
Error Handling and ION Exceptions

When the ION Server detects an error, it throws an exception value you can detect
and act upon using error-handling code. Consult the reference page for the method
you are using to determine which exceptions ION can detect in a given situation.

Error handling is generally accomplished via a Java try/catch code segment. The
following skeleton try/catch code illustrates how to catch exceptions and display
an error message on the Java console. For a more detailed example, see “Simple
Applet Example” on page 105.

Note
If an ION method (or any Java method, for that matter) throws a checked exception
value, you must handle the exception in your code. The Java compiler will
complain if you do not properly handle all possible exception values. Refer to a
Java manual for more information on Java exception handling.

try{
some ION command

}catch(IOException e) {
// IO Error

System.err.println("Error: Communication error:
"te.getMessage());
return;

}catch(IONIllegalCommandException e){
// Illegal Command

System.err.println("Error: Illegal Command:
"te.getMessage());
return;

}catch(IONSecurityException e){
// Security Violation

System.err.println("Error: Security Violation:
"te.getMessage());
return;

}
}

Error Handling and ION Exceptions ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 99
Debug Mode

The “IONGrConnection / IONJGrConnection Class” on page 173 and the
“IONGrDrawable / IONJGrDrawable Class” on page 188 both supply a
debugMode() method that allows you to view the IDL command log output. Enable
debug mode by adding the following to the Java code which establishes the
connection to the ION Server:

connection.debugMode(true);

where connection is the IONGrConnection object or IONGrDrawable object.

When debug mode is in effect, holding down the Shift key and clicking on the ION
drawing area associated with the connection, a separate window opens and displays
the output that would typically appear in the IDL command log.

Tip
For those classes that do not have a debugMode() method, you can use the
IONOutputListener Interface to return IDL output.

Debugging Your Application

When developing your applications, you can use the Java method,
System.out.println() to print any type of Java program information. As the
previous method can be used to view IDL command log output, this methods returns
comparable Java program information. When running a standalone application (not
an applet in a web browser), these log messages will be printed to your command line
console. When running an applet from a browser, the information will be printed in
your Java console. See “Check the Java Console Log” on page 291 for instructions
on how to open the Java console.
ION Java User’s Guide Debug Mode

100 Chapter 5: Building ION Applets and Applications
Converting Between IDL and Java Bytes

It is important to understand the differences between byte data types in IDL and Java
in order to ensure that byte arrays are transferred correctly between IDL and Java.

IDL and Java both have a basic byte data type, however, IDL’s byte is unsigned and
Java’s is signed. Java does not support the concept of unsigned types. When a byte in
Java is cast to an integer, the sign is preserved via sign extension. This can cause
problems when transferring byte data between IDL and Java.

To understand the problem, consider the following unsigned IDL byte:

BYTE idlByte = 170

The binary representation of this byte is:

1010 1010

Unsigned 8-bit bytes give a numeric range of 0 to 255 while signed bytes have a
range of –128 to 127. Signed numbers are represented using “two’s complement.” In
two’s complement, the highest bit is the sign-bit and determines whether the number
is negative or positive. This is not a simple negation, however, and does change the
unsigned value of the number.

Using Java’s signed, two’s complement numbers, this same set of bits corresponds to:

byte javaByte = -86;

When the value is cast to an integer, the sign-bit is extended to fill in the new bits so
that the value of the number is preserved. If the integer is 16 bits long, the sign-
extended byte becomes (in binary):

The signed value of this is still -86. Due to how two’s complement numbers function,
however, simply negating this number will not return the original unsigned value. If
this was an unsigned data type, its 16-bit value would be 65450.

When a byte value is transferred from IDL to Java and the unsigned value is needed,
the number must be converted to a positive number with the lower 8 bits staying the
same. To accomplish this, use a bitmask to turn the high-order bits to 0 and preserve
the low order bits:

1111 1111 1010 1010�
Sign Extension
Converting Between IDL and Java Bytes ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 101
byte javaByte = -86;
short javaShort = (short)javaByte; // cast the byte to a short
short unsignedValue = javaShort & 0x00FF;

After this conversion, unsignedValue is 170, the original value from IDL.

So, why does ION not do this under the hood? The simple answer is that we have
taken the approach that Java rules apply on the Java side and IDL rules apply on the
IDL side. Understanding the differences will help in application development and
allow the developer to have more fine-grained control over how the application
works.
ION Java User’s Guide Converting Between IDL and Java Bytes

102 Chapter 5: Building ION Applets and Applications
Considerations Specific to ION Applets

When creating your ION applet, keep the following points in mind.

Tip
It’s a good idea to shut down and restart the browser any time you make a changes
to your HTML file or your class files.

Import the ION Package

In addition to the standard Java packages (and any other packages used in your
applet), you must import the ION package with the statement:

import com.rsi.ion.*

ION Applets Extend the Java Applet Class

ION applets are subclassed from (they extend) the Java Applet class. When defining
your applet class, use a statement similar to the following:

public class MyIONApplet extends Applet

where MyIONApplet is the name of your applet class.

See “Simple Applet Example” on page 105 for an example. For a basic overview of
Applets, consult a Java reference.

Including Applets in HTML Pages

To include your compiled applet in an HTML page, use the <APPLET> tag with the
NAME, CODE, WIDTH, and HEIGHT attributes:

<APPLET NAME="myIONApplet" CODE=myIONApplet.class
WIDTH=300 HEIGHT=300 >

</APPLET>

For more information, see Chapter 4, “Using ION’s Pre-Built Applets”.

Locating the Class Files for use by ION Applets

ION applets must have access to the ION class files in order to run. While you can
use the CODEBASE attribute to specify a relative path from the location of an
HTML page containing an ION applet tag to the location of the class files, it is often
easier to copy the class files (or provide a symbolic link, if your system supports
symbolic links) to another directory located in or near the directory containing your
HTML files.
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 103
For example, suppose you have located your HTML pages in a directory named
public_html. You may wish to place the ION package, the ION ZIP file, and the
ION JAR file in a subdirectory of public_html named java. If you then include
any ION applet class files you create in the java directory, you could simply specify:

CODEBASE="./java"

in the <APPLET> tag used in your HTML page.

See “CODEBASE” on page 69 for further details.

Supporting Java Archive Files

When a web browser encounters an HTML page that contains a Java applet, the class
files that make up the applet are downloaded from the web server into the browser.
The applet is executed only after all of the necessary class files have been
downloaded. Because a separate HTTP connection between the client and the server
is established for each class file, the download time for a large applet (an applet with
many class files) can be substantial.

To increase the download performance of Java applets, consider using a Java Archive
file, or JAR file, detailed in number 3 of the following section. A JAR file can contain
multiple class files, thus avoiding the need for multiple connections. A JAR file can
also be compressed, further speeding the download process. Most modern browsers
support the JAR format.

Browser Support of ION Class Library Versions

To support the different methods used by different browsers to download Java class
files, ION provides three separate versions of the ION class library. These are:

1. The raw Java class files are contained in the com/rsi/ion directory structure
within the classes directory of the ION distribution. Each file is downloaded
to the browser via a separate connection to the server.

Use raw Java class files with browsers that don’t support the ARCHIVE
attribute to the APPLET tag. For example, version 3 of Microsoft’s Internet
Explorer does not support the ARCHIVE attribute.

Note
To use this method, you must copy the com directory and all its
subdirectories to your Web server since the raw Java class files are not copied
to your Web server during ION installation.
ION Java User’s Guide Considerations Specific to ION Applets

104 Chapter 5: Building ION Applets and Applications
2. An compressed file named ion_16.zip contains all of the Java class files
included in the ION package. This ZIP file is located in the classes directory
of the ION distribution, and can be downloaded via a single connection to the
server.

Use the ZIP file with browsers that support the ARCHIVE attribute and
support compressed archive files. For example, version 4 of Netscape’s
Navigator supports the ARCHIVE attribute and compressed JAR files.

3. An uncompressed Java Archive (JAR) file named ion_16.jar contains the
Java class files included in the ION package. This JAR file is located in the
classes directory of the ION distribution, and can be downloaded via a
single connection to the server.

Use the JAR file with browsers that support uncompressed archive files. For
example, version 3 and later of Netscape’s Navigator supports uncompressed
JAR files.

Supporting Multiple Browser Types

Note
This section is relevant only for ensuring support of browsers prior to Netscape 4 or
Internet Explorer 5.

Use the following procedure to create a set of HTML pages that will use the most
efficient download method for any of the three browser types defined above.

1. Ensure that the archive files are in the same directory. By default, they are
located in the classes subdirectory of the ION distribution. This directory
should be specified via the CODEBASE attribute to the APPLET tag. See
“CODEBASE” on page 69 for more information.

2. Create two versions of each HTML page that contains an ION applet. One
page should include a reference to the uncompressed archive file via the
ARCHIVE attribute to the APPLET tag (ARCHIVE="ion_16.zip"). The
other page should include a reference to the compressed archive file
(ARCHIVE="ion_16.jar"). Browsers that do not support the ARCHIVE
attribute will ignore it and download the unarchived files.

3. Create a “switch page” that includes JavaScript. The switch page determines
which version of the browser is present and loads the appropriate HTML page.
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 105
<SCRIPT language="JavaScript">
<!--

navigator.onerror = null;
version = (parseInt(navigator.appVersion) > 3 ? "4" : "3");
if(version == "4"){
// Version 4 can handle jar files, load the Jar page

location.replace("JAR_page.html");
} else {

location.replace("ZIP_page.html");
}
// -->
</SCRIPT>

where JAR_PAGE.html is the name of the HTML page that references the
ion_16.jar file and ZIP_PAGE.html is the name of the HTML page that references
the ion_16.zip file. For example, you may name the page that references the JAR
file myfile_j.html and the file that references the ZIP file myfile_z.html.

Simple Applet Example

The following Java code creates a simple applet that displays an IDL graphic. The
example constructs an applet named Commands; the code is available in the
examples/src directory in a file named commands.java.

Note
The characters “//” denote comments in Java code.

// -*-C++-*-
//
// commands.java
//
//

/***
Copyright (c) 1997-2002, Research Systems, Inc. All rights
reserved. Unauthorized reproduction prohibited.

(Of course, because these are examples, feel free to remove these
lines and modify to suit your needs.)

**
/

import java.awt.*;
import java.applet.*;
import java.io.*;
import java.net.*;
import com.rsi.ion.*; // Import the ION Package
ION Java User’s Guide Considerations Specific to ION Applets

106 Chapter 5: Building ION Applets and Applications
public class commands extends Applet implements
IONDisconnectListener
{
// Instance Vars

IONGrConnection c_ionCon; // the ion connection
IONGrDrawable c_ionDrw; // the ION drawable
Dimension c_dimApp; // Size of drawing area
int c_bConnected=0; // 0 => !conn, 1 => conn, -1 =>

conn failed

// ******************************
// Init Method
// ******************************

public void init(){
// Create connection and drawable objects

c_ionCon = new IONGrConnection();
c_dimApp = getSize();
c_ionDrw = new IONGrDrawable(c_dimApp.width, c_dimApp.height);

// Add the drawable to the AWT tree
setLayout(new GridLayout(1, 1));
add(c_ionDrw);

}
/*

* Inorder to display status messages at startup and also
* to be able to disconnect when the page is not being viewed
* we override the Applets start() and stop() methods

* start()
*
* Purpose:
* Overide the applet's start method.
* Connect to IONJ if not already connected.
*
* Note: in pre-ION1.4 releases, this method called repaint.
* repaint then would call our paint method (now deleted from this
* file). The paint method was responsible for connecting.
* However, in some cases our paint method would not be called and
* the applet would not get its data from the server.
* We are now guaranteed that we will connect to the IONJ server
* because start() will always be called when the applet starts.
*/
public void start(){

if(c_bConnected == 0) // Not connected to ION, do so.
connectToServer();

}

Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 107
/*

* stop()
*
* Purpose:
* Override the applet's stop method. This method
* Is called when the page is not being viewed. We
* disconnect from the server when this is the case.
*/
public void stop(){

if(c_bConnected == 1){
c_ionCon.removeIONDisconnectListener(this);
c_ionCon.disconnect();
c_bConnected=0;

}
}

/*
**
* connectToServer()
*
* Purpose:
* Connects to the ION server, providing feedback to user
*/
private void connectToServer(){

// Write Status message
writeMessage("Connecting to ION Java Server...");

// Connect to the server
try {

c_ionCon.connect(this.getCodeBase().getHost());
} catch(UnknownHostException eUn) {

System.err.println("Error: Unknown Host.") ;
writeMessage("Error:Unknown Host.");
c_bConnected = -1;
return;

} catch(IOException eIO) {
System.err.println("Error: Establishing Connection. ION

Java Server Down?");
writeMessage("Error: Establishing Connection. ION Java

Server Down?");
c_bConnected = -1;
return;

} catch(IONLicenseException eLic){
System.err.println("Error: ION Java License Unavailable.")

;
writeMessage("Error: ION Java License Unavailable.");
c_bConnected = -1;
ION Java User’s Guide Considerations Specific to ION Applets

108 Chapter 5: Building ION Applets and Applications
return;
}

c_bConnected = 1;
c_ionCon.addIONDisconnectListener(this);

// Since we are only working with 8 bit, set decompose
c_ionCon.setDecomposed(false);

// Add the drawable to the connection
c_ionCon.IONGr2addDrawable(c_ionDrw);

writeMessage("Drawing Graphics..."); // message to screen
// Issue IDL commands to generate a plot

try {
// Set the color table

c_ionCon.executeIDLCommand("loadct, 15");

// Create some data
c_ionCon.executeIDLCommand("a = dist(30)");

// Draw a contour plot
c_ionCon.executeIDLCommand("show3, a");

//Note that it is generally faster to package multiple
//IDL commands into a single .pro to call. This example
//sends commands separately so that the code is easier to

follow.
} catch(Exception e) {

String smsg;
if(e instanceof IOException)

smsg = "Communication error:"+e.getMessage();
else if(e instanceof IONSecurityException)

smsg = "ION Java security error";
else if(e instanceof IONIllegalCommandException)

smsg = "Illegal IDL Command detected on server.";
else

smsg = "Unknown error: "+e.getMessage();
System.err.println("Error: "+smsg);
writeMessage("Error: "+smsg);
return;

}
writeMessage("Done");

}

/*
**
* IONDisconnection()
*
* Purpose:
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 109
* Called when the connection is broken (can report reason).
*/
public void IONDisconnection(int i){
System.err.println("Server Connection Closed");
writeMessage("Server Connection Closed");
if(c_bConnected == 1)

c_bConnected = 0;
}

/*

* writeMessage()
*
* Purpose:
* Utility method that is used to write a string to the
* screen using Java.
*/
private void writeMessage(String sMsg){

showStatus(sMsg);
System.out.println(sMsg);

}
}

Further Examples

Example code illustrating ION features is included in the installed ION distribution.
You will find example HTML files located in the examples directory in your
installed ION distribution. The raw Java source files for the example ION classes are
included in the src subdirectory of the examples directory. Also included in the
examples directory are a number of IDL .pro files that are called by the ION
demonstration applets. See “Running the ION Java Examples” on page 48 for more
information.

Note
For the examples to function properly, you must have the ION Server running on
your server machine. If you do not yet have the ION Server running on your
system, visit Research Systems’ ION Web site and view ION examples there.

ION Applets and Scripting Languages

You can use scripting languages such as JavaScript and VBScript to control ION
applets included on an HTML page by calling ION methods that are available to all
applets. Communication between scripts and applets gives you a simple way to create
interactive HTML pages that build on ION’s pre-built applets.
ION Java User’s Guide Considerations Specific to ION Applets

110 Chapter 5: Building ION Applets and Applications
Browser and Script Language Differences

Two competing scripting languages are currently available for use in HTML pages —
JavaScript and VBScript. JavaScript was developed by Netscape for use in its
Navigator browser; VBScript was developed by Microsoft for use in its Internet
Explorer browser. While the two scripting languages have much in common, they do
differ in ways that are beyond the scope of this manual to describe. In the context of
writing scripts that communicate with ION applets, the important differences are:

• Netscape browsers have a mechanism called “LiveConnect” that allows
communication between JavaScript and applets.

• While Microsoft browsers support JavaScript as well as VBScript, they do not
allow communication between JavaScript and applets. In Microsoft browsers,
communication between scripts and applets must occur through VBScript.

The practical result of this situation is that in order to create HTML pages that allow
users of both Netscape’s Navigator and Microsoft’s Internet Explorer to interact with
ION applets via scripts, you must write HTML code that decides “on the fly” which
scripting language to use.

Choosing Between JavaScript and VBScript

The simplest way to provide pages that use JavaScript for Netscape browsers and
pages that use VBScript for Microsoft browsers is to use a “gateway” HTML page
that loads one of two other HTML pages depending on the type of browser. The
following HTML page uses JavaScript statements to detect whether the browser
accessing the page is Netscape Navigator. If so, it loads a JavaScript version of the
HTML page; otherwise it loads a VBScript version of the HTML page.

<HTML>
<! This page refers IE or Netscape to the proper ION example >
<SCRIPT language=JavaScript>
// <!--
var browser = navigator.appName;

if (browser.indexOf ("Netscape") != -1)
location = "javascript.html"; // jump to JavaScript page

else
location = "vbscript.html"; // jump to VBScript page

// -->
</SCRIPT>
</HTML>
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 111
Note
The script above assumes that the browser is either Navigator or Internet Explorer.
Currently, the vast majority of browsers in use are one of these two; still, you may
wish to make your own “gateway” HTML page more robust.

Methods Available

The following methods are available for communication between scripting languages
and ION applets:

executeIDLCommand('string')

where string is a valid IDL command string. The executeIDLCommand() method
allows you to execute any IDL command via a script, with IDL’s output going to the
specified applet’s drawing area.

For example, if you have an IONSurfaceApplet named MYSURF, you could use the
following JavaScript statement to change the color table when the user presses a
button:

document.MYSURF.executeIDLCommand("LOADCT, 5");

See “Example: Using JavaScript” on page 111 for a more complete discussion.

disconnect()

Use this method to disconnect from the ION Server.

Example: Using JavaScript

The following HTML code demonstrates the use of JavaScript to interactively update
an ION graphic. The example includes an IONGraphicApplet that displays a shaded
surface, uses a JavaScript select object to create a pulldown list of rotation values,
and adds a button to rotate the surface to the selected angle.

Note
The following script will work in Netscape’s Navigator browser, but not in the
Microsoft’s Internet Explorer browser.

<!-- Define the HTML header. Note that the JavaScript is
included in the HEAD section. -->

<HTML>
<HEAD>
<TITLE>Simple JavaScript Applet Test</TITLE>

<!-- The script language is JavaScript. We declare the variable
rotation with an initial value of 30 degrees. -->
<SCRIPT language=JavaScript>
ION Java User’s Guide Considerations Specific to ION Applets

112 Chapter 5: Building ION Applets and Applications
var rotation = "30";

// The getSelectedValue() function returns the text associated
// with the value chosen from the pulldown list.

function getSelectedValue(sel) {
return sel.options[sel.selectedIndex].text

}

// The rot_surf() function retrieves the rotation value and
// executes the IDL command to re-draw the graphic. It is called
// when the button is clicked.

function rot_surf() {
rotation = getSelectedValue(document.command_form.rot_value);
document.SURFAPP.executeIDLCommand("SHADE_SURF, a,

AZ="+rotation);
}

</SCRIPT>
</HEAD>
<BODY>
<!-- JavaScript input controls must be contained in an

HTML form. -->
<FORM NAME="command_form">

<!-- Create an IONGraphicApplet applet named "SURFAPP" that
generates some data and creates a shaded surface. Note that the
CODEBASE attribute is set to "../classes". This is the proper path
for the example as installed with the ION documentation
files.-->

<APPLET NAME="SURFAPP" CODE=com.rsi.ion.IONGraphicApplet.class
CODEBASE="../classes" WIDTH=200 HEIGHT=200>
<PARAM NAME="DEBUG_MODE" VALUE="YES">
<PARAM NAME="SERVER_DISCONNECT" VALUE="NO">
<PARAM NAME="DECOMPOSED_COLOR" VALUE="NO">
<PARAM NAME="IDL_COMMAND_0"

VALUE="a = EXP(-(SHIFT(DIST(30), 15, 15)/7)^2)">
<PARAM NAME="IDL_COMMAND_1" VALUE="LOADCT, 5">
<PARAM NAME="IDL_COMMAND_2" VALUE="SHADE_SURF, a">

</APPLET>

<!-- Create the pulldown menu of rotation values -->
<SELECT NAME="rot_value" SIZE=1>
<OPTION VALUE=15>15
<OPTION VALUE=30 SELECTED>30
<OPTION VALUE=45>45
<OPTION VALUE=60>60
<OPTION VALUE=75>75
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 113
<OPTION VALUE=90>90
</SELECT>

<!-- Create the "Rotate Surface" button, which calls the
JavaScript function rot_surf().-->
<INPUT TYPE=BUTTON NAME="rot_button" VALUE="Rotate Surface"
onClick="rot_surf()">
</FORM>
</BODY>
</HTML>

See “Notes on the Differences Between the JavaScript and VBScript Versions” on
page 115.

Example: Using VBScript

The following HTML code demonstrates the use of VBScript to interactively update
an ION graphic. The example includes an IONGraphicApplet that displays a shaded
surface, uses a VBScript select object to create a pulldown list of rotation values,
and adds a button to rotate the surface to the selected angle. The line numbers are
provided to aid in discussion; they are not part of the HTML code.

Note
The following script shown will work in Microsoft’s Internet Explorer browser, but
not in the Netscape Navigator browser.

<!-- Define the HTML header. Note that the VBScript is included in
the HEAD section. -->
<HTML>
<HEAD>
<TITLE>Simple VBScript Applet Test</TITLE>

<!-- The script language is VBScript. We declare the variable
rotation with an initial value of 30 degrees. -->

<SCRIPT language=VBScript>
Dim rotation
rotation = "30"

// The rot_button_OnClick() subroutine retrieves the index of
// the value selected in the pulldown list, uses the index to
// retrieve the text value, and executes the IDL command to redraw
// the graphic.

sub rot_button_OnClick()
ind = document.command_form.rot_value.selectedIndex
rotation = document.command_form.rot_value.options(ind).value
document.SURFAPP.executeIDLCommand("SHADE_SURF, a,

AZ="+rotation)
ION Java User’s Guide Considerations Specific to ION Applets

114 Chapter 5: Building ION Applets and Applications
end sub
</SCRIPT>

</HEAD>
<BODY>

<!-- Create an IONGraphicApplet applet named "SURFAPP" that
generates some data and creates a shaded surface. Note that the
CODEBASE attribute is set to "../classes". This is the proper path
for the example as installed with the ION documentation
files. -->

<APPLET NAME="SURFAPP" CODE=com.rsi.ion.IONGraphicApplet.class
CODEBASE="../classes" WIDTH=200 HEIGHT=200>
<PARAM NAME="DEBUG_MODE" VALUE="YES">
<PARAM NAME="SERVER_DISCONNECT" VALUE="NO">
<PARAM NAME="DECOMPOSED_COLOR" VALUE="NO">
<PARAM NAME="IDL_COMMAND_0"

VALUE="a = EXP(-(SHIFT(DIST(30), 15, 15)/7)^2)">
<PARAM NAME="IDL_COMMAND_1" VALUE="LOADCT, 5">
<PARAM NAME="IDL_COMMAND_2" VALUE="SHADE_SURF, a">

</APPLET>

<!-- VBScript input controls must be contained in an
HTML form. -->

<FORM NAME="command_form">

<!-- Create the pulldown menu of rotation values. -->
<SELECT NAME="rot_value" SIZE=1>

<OPTION VALUE=15>15
<OPTION VALUE=30 SELECTED>30
<OPTION VALUE=45>45
<OPTION VALUE=60>60
<OPTION VALUE=75>75
<OPTION VALUE=90>90

</SELECT>

<!-- Create the "Rotate Surface" button. The
rot_button_OnClick() subroutine is called automatically
when this button is clicked. -->

<INPUT TYPE=BUTTON NAME="rot_button" VALUE="Rotate Surface">
</FORM>
</BODY>
</HTML>
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 5: Building ION Applets and Applications 115
Notes on the Differences Between the JavaScript and VBScript
Versions

1. Interaction between the applet and the script language takes place in JavaScript
statements in the Netscape Navigator version, and in VBScript statements in
the Microsoft Internet Explorer version. The syntax of the scripting language is
slightly different.

2. In the JavaScript version, the applet is included within the HTML FORM
definition. Internet Explorer requires that the applet be located outside the
FORM.

In JavaScript, you must explicitly tie a control (a button, for example) to a JavaScript
function. VBScript automatically looks for a subroutine name based on the name of
the button.

Tips and Tricks

This section includes suggestions that may be useful in some situations. Make sure
your installation meets the criteria defined here before implementing any of these
suggestions.

Local Netscape Users

If your installation is used only by a known set of users who all use Netscape’s
Navigator version 4 or later, you can eliminate the need to download the Java class
files when an applet loads. Do the following:

1. Have each of your users install a copy of the ion_release.jar file in the
Program/java/classes subdirectory of their local Netscape directory.

2. Remove the ARCHIVE attribute from the APPLET tag in your HTML code.

Note
The Java security mechanism requires that applet classes must be loaded from the
server on which ION is running. This means that the approach described here will
fail with a security error if the applet class files are not located in the com/rsi/ion

subdirectory of the directory specified by the CODEBASE attribute.

Stop Methods

If your applet includes a stop() method, it will be invoked automatically when the
browser leaves the browser window. In your applets, it is good practice to include a
stop() method that closes the ION connection and does any other cleanup that may be
necessary.
ION Java User’s Guide Considerations Specific to ION Applets

116 Chapter 5: Building ION Applets and Applications
Client-side Animation

IDL’s animation routines all rely on the IDL widget toolkit, and are thus not suitable
for use with ION. You can, however, use IDL to create the individual frames of an
animation and create an ION applet to build an array of frames and display the
animation on the client side (in a browser or Java application).

An example application that does this sort of client-side animation is included in the
ION distribution. Point your browser at the file animation.html in the demo
subdirectory of the examples directory. The Java sources for the animation classes
are included in the src subdirectory of the classes directory. Note that the animation
demo relies on an IDL .pro file; see “Running the ION Java Examples” on page 48.

Tip
You can create an MPEG file on-the-fly with IDL and then supply a link to it. If the
client browser has a common MPEG plug-in, you can play back the animation
without requiring a special java applet. MPEG support in IDL requires a special
license. For more information, contact your RSI sales representative.
Considerations Specific to ION Applets ION Java User’s Guide

Chapter 6:

ION Java Class and
Method Reference
This chapter describes the ION Java classes and their methods. The following classes are covered
in this chapter:

• IONCallableClient Class • IONCanvas / IONJCanvas Class

• IONCommandDoneListener Interface • IONComplex Class

• IONContour / IONJContour Class • IONDComplex Class

• IONDisconnectListener Interface • IONDrawable Interface

• IONGraphicsClient Class • IONGraphicConnection Interface

• IONGrConnection / IONJGrConnection Class • IONGrContour Class

• IONGrDrawable / IONJGrDrawable Class • IONGrGraphic Class

• IONGrMap Class • IONGrMapContinents Class

• IONGrMapGrid Class • IONGrMapImage Class

• IONGrPlot Class • IONGrSurface Class
ION Java User’s Guide 117

118 Chapter 6: ION Java Class and Method Reference
Note
For descriptions of the ION Java applet classes, see Chapter 4, “Using ION’s Pre-
Built Applets”.

• IONMap / IONJMap Class • IONMouseListener Interface

• IONOffScreen Class • IONOutputListener Interface

• IONPlot / IONJPlot Class • IONSurface / IONJSurface Class

• IONVariable Class • IONWindowingClient Class
ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 119
How to Use this Chapter

The elements of the ION Java class library are documented alphabetically in this
chapter. The page or pages describing each class include a description of the class
declaration, which provides pointers to the Java class (or other ION class) that the
class inherits from, if any. Note that this chapter does not provide documentation for
the Java classes themselves; see your Java API reference materials for descriptions of
the Java classes. Class methods are documented alphabetically (with the exception of
the constructor method for the class, which is documented first) following the
description of the class itself.

A description of each method follows its name. Beneath the general description of the
method are a number of sections that describe the syntax for calling the method and
its arguments (if any). These sections are described below.

Syntax

The “Syntax” section shows the proper syntax for calling the method.

Data Types

Java is a strongly-typed language, which means that input and output data variables
must be created as or cast to the proper type before use. The “Syntax” description
includes the data type of each variable specified. For example, the following is a
syntax description for the ION method that sets the value of an IDL variable:

setIDLVariable(String sName, IONVariable oVar)

In this case, there are two arguments to the setIDLVariable method: sName and oVar.
The word “String” defines sName as a variable of type string. Similarly, the word
“IONVariable” defines oVar as a variable of type IONVariable.

Multiple Syntax Definitions

Many ION Java methods can be called in more than one way. In these cases, all of the
available syntax definitions are listed together. For example, the following are all
valid ways to call the setXValue method of the IONContour class:

setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)
ION Java User’s Guide How to Use this Chapter

120 Chapter 6: ION Java Class and Method Reference
This means that the argument to the setXValue method can be either an integer,
single-precision floating-point, or double-precision floating-point array, or a string
value.

Optional Arguments

Arguments that are not required are included in the syntax definition enclosed in
square brackets ([]). Italicized square brackets indicate an array, while non-
italicized square brackets indicate that the enclosed arguments are optional. For
example, the square brackets in this syntax definition indicate that the variable X is an
array variable:

setXValue(int X[])

The square brackets in the following syntax definition indicate that the portNumber
argument is optional:

connect(String hostname [, int portNumber])

Case Sensitivity

ION object class and method names are displayed in mixed-case type. Unlike IDL,
the Java language is case-sensitive — names of ION Java methods and classes must
be entered with the same capitalization as shown in this reference section.

Italic Type

Arguments to ION procedures and functions — data or variables you must provide —
are displayed in italic type.

Courier Type

Class declarations, syntax, and examples are shown in courier.

IDL Code

IDL functions, procedures, and keywords are displayed in UPPER CASE type. For
example, the calling sequence for an IDL procedure looks like this:

CONTOUR, Z [, X, Y]

Arguments

The “Arguments” section describes each valid argument to the method. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the method’s syntax.
How to Use this Chapter ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 121
Exceptions

The “Exceptions” section lists the ION exception values that are thrown when your
error-handling code detects an error. For more information on exception handling,
consult your Java manual. Refer to the following descriptions for each exception:

IOException

A network communication error was detected. Server is disconnected.

IONIllegalCommandException

The specified IDL command was illegal.

IONIsAnArrayException

The variable contains an array value.

IONLicenseException

An ION license could not be obtained.

IONNotAnArrayException

The IONVariable is not an array.

IONSecurityException

The specified IDL command is not allowed under the current ION security rules.

NumberFormatException

The variable is a string that cannot be converted.

UnknownHostException

The given hostname is unknown.

Example

Where appropriate, the “Example” section includes a short example that
demonstrates the use of the method.
ION Java User’s Guide How to Use this Chapter

122 Chapter 6: ION Java Class and Method Reference
IONCallableClient Class

The IONCallableClient class provides mechanisms to handle communication with
the server, execution of IDL commands, retrieval of IDL command log output, and
getting and setting IDL variables on the ION Server.

In order to provide support for mouse operations (the IDL CURSOR procedure) the
main thread that handles the Java event loop must not block during IDL command
execution. If the main event thread blocked and the IDL server requested a mouse
location, the client and the server would be in a deadlock condition. To prevent a
deadlock condition, this class provides the sendIDLCommand() method which sends
the command to the server for execution and returns, not waiting for the command to
complete. The class is informed of the commands completion status through the
IONCommandDoneListener interface.

Class Declaration

public class IONCallableClient

Methods

• IONCallableClient() — Constructs an object of the IONCallableClient class.

• addIONCommandDoneListener() — Adds a “command done” listener to
the client object.

• addIONDisconnectListener() — Adds a “disconnect” listener to the client
object.

• addIONOutputListener() — Adds an “output” listener to the client object.

• connect() — Connects to the server.

• disconnect() — Shuts down the ION Server and disconnects.

• executeIDLCommand() — Executes an IDL command on the ION Server.
Control is not retuned until the command has been executed.

• getClientVersion() — Returns the current version of ION.

• getConnectionType() — Returns the type of connection in use.

• getIDLVariable() — Gets the value of an IDL variable on the ION Server.

• removeIONCommandDoneListener() — Removes a “command done”
listener from the client object.
IONCallableClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 123
• removeIONDisconnectListener() — Removes a “disconnect” listener from
the client object.

• removeIONOutputListener() — Removes a listener from the client object.

• sendIDLCommand() — Posts an IDL command to the ION Server. Control is
returned as soon as the command is sent.

• setConnectionMethod() — Sets the type of connection for the client.

• setConnectionTimeout() — Sets the timeout for socket connections.

• setIDLVariable() — Sets the value of an IDL variable on the ION Server.

Subclasses

• IONGraphicsClient Class

Constants

• HTTP_CON

• SOCK_CON

• BEST_CON

• NO_CON

IONCallableClient()

The IONCallableClient() method constructs an IONCallableClient object. When it
returns, all internal initialization is complete. No connection is made at this time.

Syntax

public IONCallableClient()

Arguments

None

Example

IONCallableClient client = new IONCallableClient();
ION Java User’s Guide IONCallableClient Class

124 Chapter 6: ION Java Class and Method Reference
addIONCommandDoneListener()

The addIONCommandDoneListener() method is used to register an object that
implements the IONCommandDoneListener interface with this object.

Syntax

public final void addIONCommandDoneListener(IONCommandDoneListener
listener)

Arguments

listener

An object that implements the IONCommandDoneListener interface. The listener is
added to the internal listener list.

Exceptions

None

addIONDisconnectListener()

The addIONDisconnectListener() method adds an object that implements the
IONDisconnectListener interface to the internal list of registered listeners. When the
client/server connection is disconnected, callback methods are called on the objects
that are registered with the IONCallableClient.

Syntax

public final void addIONDisconnectListener(IONDisconnectListener listener)

Arguments

listener

An object that implements the IONDisconnectListener interface. The listener is
added to the internal listener list.

Exceptions

None.
IONCallableClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 125
addIONOutputListener()

The addIONOutputListener() method is used to add an object that implements the
IONOutputListener interface to the internal list of listeners kept by this object. When
any IDL output is sent from the server to the client, the output is sent to the objects
contained in the listener list through the callback method defined by the
IONOutputListener interface. This provides an efficient method of passing IDL
output to the client and mimics the Java 1.1 event model.

Syntax

public final void addIONOutputListener(IONOutputListener listener)

Arguments

listener

This is an object that implements the IONOuptutListener interface. This interface
defines the format of the callback method used to pass IDL output to the listener
object. The listener is added to the internal listener list.

Exceptions

None.

connect()

The connect() method establishes a connection between the client and the ION
Server. The client and the server make validity checks and the communication
protocol is established. If hostname and port information for both the ION Server and
the ION HTTP Tunnel Broker are supplied, the connection type is set automatically
to “BEST_CON”. See “setConnectionMethod()” on page 132 for details on setting
other connection types.

Syntax

public void connect(String sHostname)

public void connect(String sHostname, int iPort)

public void connect(String sHostname, int iPort, String sHttpHost, int iHttpPort)
ION Java User’s Guide IONCallableClient Class

126 Chapter 6: ION Java Class and Method Reference
Arguments

sHostname

The name of the host that the ION Server or HTTP broker is running on. If the class is
being created as part of a Java applet, most web browsers require that the host name
be the same host that is serving the applet. If the connection type is either
“SOCK_CON” or “BEST_CON”, this argument specifies the host on which the ION
Server is running. If the connection type is “HTTP_CON” and the sHttpHost
argument is not specified, this argument specifies the host on which the HTTP Tunnel
Broker is running.

iPort

The port number to use when connecting to the ION Server. If this number is not
provided the default port number is used. If the connection type is either
“SOCK_CON” or “BEST_CON”, this argument specifies the port on which the ION
Server is running. If the connection type is “HTTP_CON” and the iHttpPort
argument is not specified, this argument specifies the port on which the HTTP Tunnel
Broker is running.

sHttpHost

The name of the host on which the ION HTTP Tunnel Broker is running. If all four
arguments to the connect method are supplied, the connection type is automatically
set to “BEST_CON”.

iHttpPort

The port number to use when connecting to the ION HTTP Tunnel Broker. If all four
arguments to the connect method are supplied, the connection type is automatically
set to “BEST_CON”.

Exceptions

IOException, UnknownHostException, IONLicenseException
IONCallableClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 127
disconnect()

Call the disconnect() method to shut down the ION Server (the daemon remains
active), close the connection between the server and the client and free any resources
that were being used by the connection. Once this method has been called, the object
should be considered invalid and not used.

Syntax

public final void disconnect()

Arguments

None.

Exceptions

None.

executeIDLCommand()

The executeIDLCommand() method sends an IDL command to the ION Server for
execution. The function returns when the command is complete on the server.

Syntax

public int executeIDLCommand(String sCommand)

Return Value

The function returns 0 if the IDL command executed successfully, or the value of the
IDL system variable !ERROR if the IDL command did not execute successfully.

Arguments

sCommand

The IDL Command that is to be executed on the IDL server. The use of the “$” IDL
command (to open a shell or command window) and the line continuation character
($) are prohibited (for security reasons, and because they can hang the server).
ION Java User’s Guide IONCallableClient Class

128 Chapter 6: ION Java Class and Method Reference
Exceptions

IOException, IONIllegalCommandException, IONSecurityException

getClientVersion()

The getClientVersion() method returns a string representing the current version of
ION, for example, “ION 1.6”.

Syntax

public final String getClientVersion()

Return Value

The method returns a string containing the current version of ION.

Arguments

None.

Exceptions

None.

getConnectionType()

The getConnectionType() method returns the type of connection in use. See
“Configuring The ION HTTP Tunnel Broker” on page 31 for details on connection
types.

Syntax

public final int getConnectionType()

Return Value

The function returns one of the following values:

• HTTP_CON — The client uses the ION HTTP Tunnel Broker exclusively.

• SOCK_CON — The client uses a normal ION socket connection exclusively.

• BEST_CON — The client makes the best connection it can.
IONCallableClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 129
These values are defined as constants in the IONCallableClient class definition. The
example below shows how to compare the returned value with the value defined in
the IONCallableClient class.

Arguments

None.

Exceptions

None.

Example

To determine whether the connection in use is a socket-only connection, use a
statement like the following:

if(getConnectionType() == IONCallableClient.SOCK_CON)

getIDLVariable()

The getIDLVariable() method requests the value of an IDL variable from the server.
The value of the variable is then returned as an IONVariable object. If the variable
does not exist on the server, it is created as an undefined type.

Syntax

public final IONVariable getIDLVariable(String sName)

Return Value

The function returns the value of the requested IDL variable in an IONVariable
object.

Arguments

sName

The variable name whose value is desired.

Exceptions

IOException
ION Java User’s Guide IONCallableClient Class

130 Chapter 6: ION Java Class and Method Reference
removeIONCommandDoneListener()

The removeIONCommandDoneListener() method removes an object that
implements the IONCommandDoneListener interface from the list of listeners
maintained by this object. If the listener is not contained in the internal list of
listeners, the method returns silently.

Syntax

public final void removeIONCommandDoneListener(IONCommandDoneListener
listener)

Arguments

listener

An object that implements the IONCommandDoneListener interface that is to be
removed from the internal listener list.

Exceptions

None.

removeIONDisconnectListener()

The removeIONDisconnectListener() method removes an object that implements the
IONDisconnectListener interface from the internal Disconnect callback list. If the
listener is not contained in the internal list of listeners, the method returns silently.

Syntax

public final void removeIONDisconnectListener(IONDisconnectListener listener)

Arguments

listener

The object that implements an IONDisconnectListener interface that should be
removed from the listener callback list.

Exceptions

None.
IONCallableClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 131
removeIONOutputListener()

The removeIONOutputListener() method removes the given listener from the internal
list of listeners. If the listener is not contained in the internal list of listeners, the
method returns silently.

Syntax

public final void removeIONOutputListener(IONOutputListener listener)

Arguments

listener

The object that implements an IONOutputListener interface that should be removed
from the listener callback list.

Exceptions

None.

sendIDLCommand()

The sendIDLCommand() method asynchronously sends an IDL command to the ION
Server for execution. The IDL command is posted to the server for execution and the
function immediately returns. Notification of the commands completion is performed
via the IONCommandDoneListener interface.

Syntax

public void sendIDLCommand(String sCommand)

Arguments

sCommand

The IDL Command that is to be executed on the IDL server. The use of the “$” IDL
command (to open a shell or command window) and the line continuation character
($) are prohibited (for security reasons, and because they can hang the server).

Exceptions

IOException
ION Java User’s Guide IONCallableClient Class

132 Chapter 6: ION Java Class and Method Reference
setConnectionMethod()

The setConnectionMethod() method sets the type of connection for the client. See
“Configuring The ION HTTP Tunnel Broker” on page 31 for details on connection
types.

Syntax

public final void setConnectionMethod(int iType)

Arguments

iType

Set the Type argument to one of the three following values:

• HTTP_CON — The client uses the ION HTTP Tunnel Broker exclusively.

• SOCK_CON — The client uses a normal ION socket connection exclusively.

• BEST_CON — The client first tries to use a SOCK_CON. If this times out, the
client uses the HTTP_CON.

These values are defined as constants in the IONCallableClient class definition.

Example

To set the connection type to HTTP-only, use the following statement:

setConnectionType(IONCallableClient.HTTP_CON)

setConnectionTimeout()

The setConnectionTimout() method sets the timeout period of a socket connection.

Syntax

public final void setConnectionTimeout(long iTime)

Arguments

iTime

The number of milliseconds the connection should stay alive without any client
requests.
IONCallableClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 133
Exceptions

None.

setIDLVariable()

The setIDLVariable() method sets the value of a variable in the ION Server. If the
variable doesn't exist, it is created.

Syntax

public final void setIDLVariable(String sName, IONVariable oVar)

Arguments

sName

The name of the variable to set on the server.

oVar

An object of type IONVariable that contains the value of the variable.

Exceptions

IOException
ION Java User’s Guide IONCallableClient Class

134 Chapter 6: ION Java Class and Method Reference
IONCanvas / IONJCanvas Class

Objects of the IONCanvas class represents a visible drawing area in which graphic
output can be drawn. The IONJCanvas class is the Swing implementation of the
IONCanvas class.

Class Declaration

Methods

• IONCanvas() / IONJCanvas() — Constructs an object of the IONCanvas /
IONJCanvas class.

Note
The following methods have been deprecated in ION 1.4. These methods
will continue to function as specified in ION 1.2, but it is recommended that
you implement one of the Java methods, MouseListener or
MouseMotionListener, which have more robust functionality.

• addIONMouseListener() — Adds a MouseListener object to the current
canvas object.

• getDownButtons() — Reports mouse button status.

• getImage() — Returns the image that is being drawn.

• getIONGraphics() — Returns an ION graphics context for the device.

• getMousePos() — Reports position of the mouse cursor on the canvas object.

• removeIONMouseListener() — Removes a MouseListener object from the
current canvas object.

public class IONCanvas

extends Canvas

implements IONDrawable

public class IONJCanvas

extends JComponent

implements IONDrawable
IONCanvas / IONJCanvas Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 135
See also the descriptions of the IONDrawable Interface and the Java Canvas class.

Subclasses

• IONGrDrawable / IONJGrDrawable Class

IONCanvas() / IONJCanvas()

The IONCanvas() method constructs an IONCanvas object of the given size. This
object can then be placed in a Java AWT tree. The IONJCanvas() method constructs
an IONJCanvas object.

Syntax

public IONCanvas(int width, int height)

public IONJCanvas(int width, int height)

Arguments

width

The width of the canvas.

height

The height of the canvas.

Exceptions

None.

addIONMouseListener()

The addIONMouseListener() method sets the object that implements the
IONMouseListener interface as the current Mouse listener. When a mouse event of
the requested type is detected, the mouse listener interface callback function is called.
Only one mouse listener is active at one time. Note that only one mouse listener is
allowed at a time. Any previously set mouse listener is removed.

Syntax

public final void addIONMouseListener(IONMouseListener listener, int breq)
ION Java User’s Guide IONCanvas / IONJCanvas Class

136 Chapter 6: ION Java Class and Method Reference
Arguments

listener

Object that implements the mouse listener interface request.

breq

The mouse event type that is requested. This integer is a bit file that contains one or
more of the following values:

• int IONMouseListener.ION_MOUSE_DOWN

• int IONMouseListener.ION_MOUSE_MOVE

• int IONMouseListener.ION_MOUSE_UP

• int IONMouseListener.ION_MOUSE_ANY

Exceptions

None.

getDownButtons()

The getDownButtons() method returns the current state of the mouse buttons in the
canvas. The return value is a bit field where bit 1 is mouse button 1, bit 2 is mouse
button 2 and bit three is mouse button 3. If a bit is set, the specific mouse button is
down.

Syntax

public final int getDownButtons()

Arguments

None.

Exceptions

None.

Example

int iState = getDownButtons();
IONCanvas / IONJCanvas Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 137
getImage()

The getImage() method returns the image of the current drawing area.

Syntax

public abstract Image getImage()

Arguments

None

Exceptions

None

Example

Image im = draw.getImage();

getIONGraphics()

The getIONGraphics() method returns a Graphics object that you can use to get
graphics information on ION’s drawing buffer or draw directly to. Unlike the
getGraphics() method, getIONGraphics() allows you to affect the actual IDL
drawable area. For example, you would use the getIONGraphics() method when
manipulating the buffer using the COPY keyword to IDL’s DEVICE procedure.

Syntax

public abstract Graphics getIONGraphics()

Arguments

None

Exceptions

None

Example

Graphics g = draw.getIONGraphics();
ION Java User’s Guide IONCanvas / IONJCanvas Class

138 Chapter 6: ION Java Class and Method Reference
getMousePos()

The getMousePos() method returns the current location of the mouse cursor in the
canvas.

Syntax

public Point getMousePos()

Arguments

None.

Exceptions

None.

Example

Point pt = getMousePos();

removeIONMouseListener()

The removeIONMouseListener() method removes a mouse listener from the object.
If the given mouse listener is not the current listener, the function exits quietly.

Syntax

public final void removeIONMouseListener(IONMouseListener listener)

Arguments

listener

The listener to remove.

Exceptions

None.

Example

removeIONMouseListener(listener);
IONCanvas / IONJCanvas Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 139
IONCommandDoneListener Interface

The IONCommandDoneListener interface defines the method that a class must
implement to receive notification that an IDL command has completed. The listener
object must be registered with the addIONCommandDoneListener() call.

Class Declaration

public interface IONCommandDoneListener

Methods

• IONCommandComplete() — Reports on the status of a completed command.

Implementing Classes

• IONGraphicApplet

• IONGrConnection / IONJGrConnection Class

IONCommandComplete()

Call the IONCommandComplete() method when a command that was sent to the IDL
server is complete.

Syntax

public abstract void IONCommandComplete(int iStatus, int iIDLStatus)

Arguments

iStatus

A value that indicates the status of the processing of the IDL command. This value is
one of the following constants that are part of this class:

• ION_COMM_OK - Command is OK.

• ION_COMM_SECURITY - Command security error.

• ION_COMM_INVALID - Command was invalid.
ION Java User’s Guide IONCommandDoneListener Interface

140 Chapter 6: ION Java Class and Method Reference
iIDLStatus

Indicates the success or failure of the execution of the IDL command. A value of 0
indicates that the command was successful. If the command was not successful,
iIDLStaus contains the value of !ERROR in the IDL session.

Exceptions

None.

Example

public void IONCommandComplete(iStatus, iIDLStatus);
IONCommandDoneListener Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 141
IONComplex Class

The IONComplex class represents a complex number.

Class Declaration

Methods

• IONComplex() — Constructs an object of the IONComplex class.

• doubleValue() — Returns the real portion of the number as a double.

• floatValue() — Returns the real portion of the number as a float.

• getDImaginary() — Returns the imaginary portion of the number as a double.

• getImaginary() — Returns the imaginary portion of the number as a float.

• intValue() — Returns the real portion of the number as an integer.

• longValue() — Returns the real portion of the number as a long.

• toString() — Returns the string value of the real portion of the number.

IONComplex()

The IONComplex() method constructs an object of the IONComplex class.

Syntax

public IONComplex(float r, float i)

Arguments

r

The real portion of the number.

i

The imaginary portion of the number.

public class IONComplex

extends Number
ION Java User’s Guide IONComplex Class

142 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

IONComplex complexvar = new IONComplex(3.0, 2.0);

doubleValue()

The doubleValue() method returns the real portion of the complex number as a
double-precision floating-point value.

Syntax

public final double doubleValue()

Arguments

None.

Exceptions

None.

Example

double d = complexvar.doubleValue();

floatValue()

The floatValue() method returns the real portion of the complex number as a single-
precision floating-point value.

Syntax

public final float floatValue()

Arguments

None.
IONComplex Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 143
Exceptions

None.

Example

float f = complexvar.floatValue();

getDImaginary()

The getDImaginary() method returns the imaginary portion of the complex number
as a double-precision floating-point value.

Syntax

public final double getDImaginary()

Arguments

None.

Exceptions

None.

Example

double d = complexvar.getDImaginary();

getImaginary()

The getImaginary() method returns the imaginary portion of the complex number as a
single-precision floating-point value.

Syntax

public final float getImaginary()

Arguments

None.
ION Java User’s Guide IONComplex Class

144 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

float i = complexvar.getImaginary();

intValue()

The intValue() method returns the real portion of the complex number as an integer
value.

Syntax

public final int intValue()

Arguments

None.

Exceptions

None.

Example

int i = complexvar.intValue();

longValue()

The longValue() method returns the real portion of the complex number as a long-
integer value.

Syntax

public final long longValue()

Arguments

None.
IONComplex Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 145
Exceptions

None.

Example

long l = complexvar.longValue();

toString()

The toString() method returns the real portion of the complex number as a string
value.

Syntax

public final String toString()

Arguments

None.

Exceptions

None.

Example

String s = complexvar.toString();
ION Java User’s Guide IONComplex Class

146 Chapter 6: ION Java Class and Method Reference
IONContour / IONJContour Class

The IONContour class extends the IONGrDrawable class and contains an
IONGrContour object to provide an easy way of drawing IDL contours. It can be
inserted into an AWT tree.

The IONJContour class extends the IONJGrDrawable class and contains an
IONGrContour object. It can be inserted into a Swing component tree.

Class Declaration

Methods

• IONContour() / IONJContour() — Constructs an object of the
IONContour/IONJContour class.

• draw() — Produces and displays the graphic on the drawing surface of this
class.

• getProperty() — Gets the value of a property.

• setNoErase() — Specifies whether the object should be erased when another
object is drawn.

• setProperty() — Sets a property for the graphic.

• setXValue() — Sets the X value of the contour.

• setYValue() — Sets the Y value of the contour.

• setZValue() — Sets the Z data of the contour.

IONContour() / IONJContour()

The IONContour() method constructs an object of the IONContour class. The
IONJContour method constructs an object of the IONJContour class.

public class IONContour

extends IONGrDrawable

public class IONJContour

extends IONJGrDrawable
IONContour / IONJContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 147
Syntax

Note
The following is the syntax for the IONContour() method. For the IONJContour()
method, replace IONContour with IONJContour.

public IONContour(int iWidth, int iHeight)

public IONContour(int iWidth, int iHeight, int Z[][])

public IONContour(int iWidth, int iHeight, float Z[][])

public IONContour(int iWidth, int iHeight, double Z[][])

public IONContour(int iWidth, int iHeight, int Z[])

public IONContour(int iWidth, int iHeight, float Z[])

public IONContour(int iWidth, int iHeight, double Z[])

public IONContour(int iWidth, int iHeight, String sName)

public IONContour(int iWidth, int iHeight, int Z[][], int X[], int Y[])

public IONContour(int iWidth, int iHeight, float Z[][], float X[], float Y[])

public IONContour(int iWidth, int iHeight, double Z[][], double X[], double Y[])

public IONContour(int iWidth, int iHeight, int Z[], int X[], int Y[])

public IONContour(int iWidth, int iHeight, float Z[], float X[], float Y[])

public IONContour(int iWidth, int iHeight, double Z[], double X[], double Y[])

public IONContour(int iWidth, int iHeight, String sZName, String sXName, String
sYName)

Arguments

iWidth

The width of the plot in pixels.

iHeight

The height of the plot in pixels.

Z

The Z values (data) to use in the contour.
ION Java User’s Guide IONContour / IONJContour Class

148 Chapter 6: ION Java Class and Method Reference
sName, sZName

The name of the IDL variable to use for the Z (data) values of the contour.

X

An array holding the values for the X coordinates of the grid.

Y

An array holding the values for the Y coordinates of the grid.

sXName

The name of the IDL variable holding the values for the X coordinates of the grid.

sYName

The name of the IDL variable holding the values for the Y coordinates of the grid.

Exceptions

None.

draw()

The draw() method produces and display a graphic in the drawing area that makes up
this object.

Syntax

public void draw()

Arguments

None.

Exceptions

None.
IONContour / IONJContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 149
getProperty()

The getProperty() method retrieves the current value of a property.

Syntax

public final IONVariable getProperty(String sName)

Argument

sName

The name of the property.

Properties Supported

The following IDL Contour properties are supported by
IONContour.[get,set]Property. Refer to the IDL documentation on keywords
available for use with the CONTOUR procedure for an explanation of each property:

BACKGROUND, CELL_FILL, CHARSIZE, CLIP, CLOSED, COLOR,
C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, DATA, DEVICE, DOWNHILL, FILL, FOLLOW,
FONT, IRREGULAR, LEVELS, MAX_VALUE, MIN_VALUE, NLEVELS,
NOCLIP, NODATA, NOERASE, NORMAL, OVERPLOT,
PATH_DATA_COORDS, PATH_FILENAME, PATH_INFO, PATH_XY, POLAR,
POSITION, SUBTITLE, T3D, TICKLEN, TITLE, TRIANGULATION,
XCHARSIZE/YCHARSIZE/ZCHARSIZE,
XGRIDSTYLE/YGRIDSTYLE/ZGRIDSTYLE, XLOG, YLOG,
XMARGIN/YMARGIN/ZMARGIN, XMINOR/YMINOR/ZMINOR,
XRANGE/YRANGE/ZRANGE, XSTYLE/YSTYLE/ZSTYLE,
XTICKFORMAT/YTICKFORMAT/ZTICKFORMAT,
XTICKLEN/YTICKLEN/ZTICKLEN,
XTICKNAME/YTICKNAME/ZTICKNAME, XTICKS/YTICKS/ZTICKS,
XTICKV/YTICKV/ZTICKV, XTITLE/YTITLE/ZTITLE,
XTICKINTERVAL/YTICKINTERVAL/ZTICKINTERVAL,
XTICKLAYOUT/YTICKLAYOUT/ZTICKLAYOUT,
XTICKUNITS/YTICKUNITS/ZTICKUNITS,
XTICK_GET/YTICK_GET/ZTICK_GET, ZAXIS, ZVALUE

Exceptions

None.
ION Java User’s Guide IONContour / IONJContour Class

150 Chapter 6: ION Java Class and Method Reference
Example

IONVariable value = getProperty(Property);

setNoErase()

The setNoErase() method of the IONContour class overrides setNoErase() in the
IONGrDrawable class. The setNoErase() method of the IONJContour class overrides
setNoErase() in the IONJGrDrawable class. See “setNoErase()” on page 195 for the
syntax of this method.

setProperty()

The setProperty() method sets a property for the contour object.

Syntax

public final void setProperty(String sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value of the property.

Properties Supported

The IDL Contour properties are supported by IONContour.[get,set]Property are the
same as those covered in “getProperty()” on page 149. Refer to the IDL
documentation on keywords available for use with the CONTOUR procedure for an
explanation of each property.

Exceptions

None.

setXValue()

The setXValue() method resets the X value of the contour.
IONContour / IONJContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 151
Syntax

public void setXValue(int X[])

public void setXValue(float X[])

public void setXValue(double X[])

public void setXValue(String sName)

Arguments

X

The new X value of the contour.

sName

The name of an IDL variable that contains the new X value of the contour.

Exceptions

None.

setYValue()

The setYValue() method resets the Y value of the contour.

Syntax

public void setYValue(int Y[])

public void setYValue(float Y[])

public void setYValue(double Y[])

public void setYValue(String sName)

Arguments

Y

The new Y value of the contour.

sName

The name of the IDL variable that contains the new Y value of the contour.
ION Java User’s Guide IONContour / IONJContour Class

152 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

setZValue()

The setZValue() method resets the Z value of the contour.

Syntax

public void setZValue(int Z[])

public void setZValue(float Z[])

public void setZValue(double Z[])

public void setZValue(int Z[][])

public void setZValue(float Z[][])

public void setZValue(double Z[][])

public void setZValue(String sName)

Argument

Z

The new Z value of the contour.

sName

The name of the IDL variable that contains the new Z value of the contour.

Exceptions

None.
IONContour / IONJContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 153
IONDComplex Class

The IONDComplex class represents a double-precision complex number.

Class Declaration

Methods

• IONDComplex() — Constructs an object of the IONComplex class.

• doubleValue() — Returns the double value of the real portion of the number.

• floatValue() — Returns the float value of the real portion of the number.

• getDImaginary() — Returns the imaginary value as a double.

• getImaginary() — Returns the imaginary value of the number.

• intValue() — Returns the int value of the real portion of the number.

• longValue() — Returns the long value of the real portion of the number.

• toString() — Returns the string value of the real portion of the number.

IONDComplex()

The IONDComplex() method constructs an object of the IONDComplex class.

Syntax

public IONDComplex(double r, double i)

Arguments

r

The real portion of the number.

i

The imaginary portion of the number.

public class IONDComplex

extends Number
ION Java User’s Guide IONDComplex Class

154 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

IONDComplex dcomplexvar = new IONDComplex(3.0, 2.0);

doubleValue()

The doubleValue() method returns the real portion of the complex number as a
double-precision floating-point value.

Syntax

public final double doubleValue()

Arguments

None.

Exceptions

None.

Example

double d = dcomplexvar.doubleValue();

floatValue()

The floatValue() method returns the real portion of the complex number as a single-
precision floating-point value.

Syntax

public final float floatValue()

Arguments

None.
IONDComplex Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 155
Exceptions

None.

Example

float f = dcomplexvar.floatValue();

getDImaginary()

The getDImaginary() method returns the imaginary portion of the complex number
as a double-precision floating-point value.

Syntax

public final double getDImaginary()

Arguments

None.

Exceptions

None.

Example

double d = dcomplexvar.getDImaginary();

getImaginary()

The getImaginary() method returns the imaginary portion of the complex number as a
single-precision floating-point value.

Syntax

public final float getImaginary()

Arguments

None.
ION Java User’s Guide IONDComplex Class

156 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

float i = dcomplexvar.getImaginary();

intValue()

The intValue() method returns the real portion of the complex number as an integer
value.

Syntax

public final int intValue()

Arguments

None.

Exceptions

None.

Example

int i = dcomplexvar.intValue();

longValue()

The longValue() method returns the real portion of the complex number as a long-
integer value.

Syntax

public final long longValue()

Arguments

None.
IONDComplex Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 157
Exceptions

None.

Example

long l = dcomplexvar.longValue();

toString()

The toString() method returns the real portion of the complex number as a string
value.

Syntax

public final String toString()

Arguments

None.

Exceptions

None.

Example

String s = dcomplexvar.toString();
ION Java User’s Guide IONDComplex Class

158 Chapter 6: ION Java Class and Method Reference
IONDisconnectListener Interface

The IONDisconnectListener interface defines a method that is called when the
connection between the client and the server is disconnected. The reason for
disconnection is defined by one of the constants that are a part of this interface.

To use this interface, your class must implement this interface and then register the
listener using addIONDisconnectListener. See IONCallableClient Class from more
information.

Class Declaration

public interface IONDisconnectListener

Methods

• IONDisconnection() — If registered, the method is called when client and
server are disconnected.

Implementing Classes

None

Constants

• ION_DIS_OK - Normal disconnection due to disconnect() method being
called.

• ION_DIS_ERR - Disconnection caused by an error. Normally due to an
interruption in the communication channel.

• ION_DIS_SERVER - Disconnection due to server shutdown.

IONDisconnection()

If registered, the IONDisconnection() method is called when the connection between
the client and the server is broken to report the reason for disconnection.

Syntax

public abstract void IONDisconnection(int iStatus)
IONDisconnectListener Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 159
Arguments

iStatus

An integer corresponding to the reason for the disconnection. These are defined by
the constants mentioned in the previous section.

Exceptions

None

Example

import javax.swing.*;
import java.io.*;
import java.net.*;
import com.rsi.ion.*;

public class disconnectEx extends JApplet
implements IONDisconnectListener {

IONGrConnection ionCon;
IONGrDrawable iondraw;

public void init() {
ionCon=new IONGrConnection();
ionCon.addIONDisconnectListener(this);

// connect to server and do ION commands
}

public void IONDisconnection(int iStatus) {
if (iStatus != IONDisconnectListener.ION_DIS_OK)

System.out.println("ION disconnection error.");

// do anything else to clean-up

}
}

ION Java User’s Guide IONDisconnectListener Interface

160 Chapter 6: ION Java Class and Method Reference
IONDrawable Interface

The IONDrawable interface defines the methods that an object must implement to act
as an ION drawable object. An IONDrawable is an object that can be drawn to by an
IONGraphicsClient. IONCanvas and IONOffScreen are both implementations of
IONDrawable.

Class Declaration

public interface IONDrawable

Methods

No public methods.

Implementing Classes

IONCanvas / IONJCanvas Class, IONOffScreen Class

• createImage() — Creates an offscreen image.

• getImage() — Returns the image that is being drawn.

• getIONGraphics() — Returns an ION graphics context for the device.

createImage()

Use the createImage() method to create an image of a given size.

Syntax

public abstract Image createImage(int width, int height)

Arguments

width

The width of the requested image

height

The height of the requested image
IONDrawable Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 161
Exceptions

None

Example

Image im = draw.createImage(300, 300);

getImage()

The getImage() method returns the image of the current drawing area.

Syntax

public abstract Image getImage()

Arguments

None

Exceptions

None

Example

Image im = draw.getImage();

getIONGraphics()

The getIONGraphics() method returns a Graphics object that you can use to get
graphics information on ION’s drawing buffer or draw directly to. Unlike the
getGraphics() method, getIONGraphics() allows you to affect the actual IDL
drawable area. For example, you would use the getIONGraphics() method when
manipulating the buffer using the COPY keyword to IDL’s DEVICE procedure.

Syntax

public abstract Graphics getIONGraphics()

Arguments

None
ION Java User’s Guide IONDrawable Interface

162 Chapter 6: ION Java Class and Method Reference
Exceptions

None

Example

Graphics g = draw.getIONGraphics();
IONDrawable Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 163
IONGraphicsClient Class

The IONGraphicsClient class provides mechanisms to handle the processing of a
graphic primitive data set from the IDL server. Information sent by the server is read
by mechanisms provided by the super class IONCallableClient.

Class Declaration

Methods

• IONGraphicsClient() — Constructs an object of the IONGraphicsClient
class.

• addIONDrawable() — Adds an object that implements the IONDrawable
interface (windows or off-screen images).

• connect() — Connects the client with the ION Server.

• copyArea() — Copies an area from one drawable to another.

• getCurrentIndex() — Gets the index of the current drawable.

• getIONDrawableIndices() — Gets a list of assigned drawable indices.

• getNumIndices() — Gets the number of drawable indices allocated.

• readImage() — Reads the current contents of the drawable

• removeIONDrawable() — Removes an object from the internal list of
IONDrawables maintained by this object.

• setDecomposed() — Sets decomposed mode on the connection.

• setIONDrawable() — Sets the current drawable.

Subclasses

IONGrConnection / IONJGrConnection Class, IONWindowingClient Class

public class IONGraphicsClient

extends IONCallableClient

implements IONMouseListener, IONGR2PropListener
ION Java User’s Guide IONGraphicsClient Class

164 Chapter 6: ION Java Class and Method Reference
IONGraphicsClient()

The IONGraphicsClient() method constructs an object of the IONGraphicsClient
class.

Syntax

public IONGraphicsClient()

Arguments

None.

Exceptions

None.

Example

IONGraphicsClient iclient = new IONGraphicsClient();

addIONDrawable()

The addIONDrawable() method adds an object that implements the IONDrawable
interface to the internal list of drawing areas maintained by this object. An
IONDrawable represents an area that graphic primitives can be rendered onto. When
the window is added to this class, that drawing area is made the current drawing area
being used for graphical output. The developer has the option of telling ION what
index to use and also requesting that the method send information about the new
drawable to the server. The function returns the window index number that is used by
IDL to reference the drawing area.

Syntax

public final int addIONDrawable(IONDrawable drawable)

public final int addIONDrawable(IONDrawable drawable, int index)

public final int addIONDrawable(IONDrawable drawable, boolean bSendAttr)

public final int addIONDrawable(IONDrawable drawable, int index, boolean
bSendAttr)
IONGraphicsClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 165
Arguments

drawable

An object that implements the IONDrawable interface.

index

The index to assign to the drawable. If no index is supplied, a free index is used.

bSendAttr

If true, the server is notified of the change to the current drawable.

Return Value

The function returns the window index number that is used by IDL to reference the
drawable.

Exceptions

None.

Example

int iIndex = addIONDrawable(drawable);
int iIndex = addIONDrawable(drawable, index);

connect()

The connect() method establishes a connection between the client and the IDL server.
The client and the server make validity checks and the communication protocol is
established.

Syntax

public void connect(String sHostname)

public void connect(String sHostname, int iPort)
ION Java User’s Guide IONGraphicsClient Class

166 Chapter 6: ION Java Class and Method Reference
Arguments

sHostname

The name of the host that the ION Server is running on. If the class is being created as
part of a Java applet, most web browsers require that the host name be the same host
that the applet is being served from.

iPort

The port number to use when connecting to the IDL server. If this number is not
provided the default port number is used.

Exceptions

IOException, UnknownHostException, IONLicenseException
IONGraphicsClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 167
copyArea()

The copyArea() method copies an area from one drawable to another.

Syntax

public void copyArea(int iSource, int iDest, int x, int y, int width, int height, int x2, int
y2)

Arguments

iSource

The index of the source drawable.

iDest

The index of the destination drawable.

x, y

The lower left corner of the area to copy.

width, height

The dimensions of the copy area.

x2, y2

The location of the lower left corner of the copy area in the destination.

Exceptions

None.

getCurrentIndex()

The getCurrentIndex() method retrieves the index of the current drawable.

Syntax

public int getCurrentIndex()

Return Value

The current drawable index. If no drawable is current, -1 is returned.
ION Java User’s Guide IONGraphicsClient Class

168 Chapter 6: ION Java Class and Method Reference
Arguments

None.

Exceptions

None.

Example

int index = getCurrentIndex();

getIONDrawableIndices()

The getIONDrawableIndices() method fills an array with the indices of the available
drawables.

Syntax

public void getIONDrawableIndices(int iIndices[]))

Arguments

iIndices

An array of length getNumIndices that will be filled with the index values.

Exceptions

None.

getNumIndices()

The getNumIndices() method returns the number of drawable indices currently
allocated.

Syntax

public int getNumIndices()

Return Value

The number of indices.
IONGraphicsClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 169
Arguments

None.

Exceptions

None.

Example

int num = getNumIndices();

readImage()

Use the readImage() method to read the contents of the current drawable.

Syntax

readImage()

readImage(int x0, int y0, int width, int height)

Arguments

x0

The x start position of the rectangle to read

y0

The y start position of the rectangle to read

width

The width of the rectangle to read

height

The height of the rectangle to read

Exceptions

None
ION Java User’s Guide IONGraphicsClient Class

170 Chapter 6: ION Java Class and Method Reference
Example

Image im = readImage();
Image im = readImage(x0, y0, width, height);

removeIONDrawable()

The removeIONDrawable() method removes an object that implements the
IONDrawable interface from the internal list of IONDrawable objects.

Syntax

public IONDrawable removeIONDrawable(IONDrawable drawable)

public IONDrawable removeIONDrawable(int index)

Return Value

This method returns a reference to the removed IONDrawable object.

Arguments

drawable

The drawable to remove.

index

The index of the drawable to remove.

Exceptions

None.

setDecomposed()

The setDecomposed() method sets an individual connection to the ION Server to use
decomposed color mode. The decomposed color mode setting determines how ION
will display graphics on a True color (24-bit or 32-bit color) device. If the argument is
true (the default) a pixel value is treated as an RGB triplet. If the argument is false,
the red component of the pixel is treated as an index into the current color table. For
more information on decomposed color mode, see the documentation for the
DECOMPOSED keyword to the DEVICE procedure in the IDL Reference Guide.
IONGraphicsClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 171
Once set, decomposed color mode applies to all drawables associated with a given
connection.

Syntax

public final void setDecomposed(boolean bDecomposed)

Arguments

bDecomposed

If bDecomposed is set to True, pixel values are interpreted as RGB triplets. (This is
the default behavior.) If bDecomposed is set to False, the first eight bits of the pixel
value (the red portion) are used as an index value into the currently loaded IDL color
table.

Exceptions

None.

setIONDrawable()

The setIONDrawable() method selects which IONDrawable to use from the internal
list of IONDrawable objects.

Syntax

public final boolean setIONDrawable(int iIndex)

Arguments

iIndex

The index that was returned from the addIONDrawable() method when the object
was added.

Return Value

The function returns the true on success, or false otherwise.

Exceptions

None.
ION Java User’s Guide IONGraphicsClient Class

172 Chapter 6: ION Java Class and Method Reference
IONGraphicConnection Interface

The IONGraphicConnection interface defines the common functionality in the
IONGrConnection and IONJGrConnection classes.

Interface Declaration

public interface IONGraphicConnection

Implementing Classes

• IONGrConnection / IONJGrConnection Class

Methods

• addDrawable() — Adds an IONGrDrawable class to this connection.

• debugMode() — Enables/Disables debug mode.

• executeIDLCommand() — Executes a given IDL command on the ION
Server. Control is not returned until the command has been executed.

• getIDLVariable() — Gets the value of an IDL variable on the ION Server.

• removeDrawable() — Removes an IONGrDrawable class from this
connection.

• sendIDLCommand() — Sends an IDL command to the ION Server. Control
is returned as soon as the command has been sent.

• setDrawable() — Sets the current drawable.

• setIDLVariable() — Sets the value of an IDL variable on the ION Server.

See “IONGrConnection / IONJGrConnection Class” on page 173 for information on
these methods.
IONGraphicConnection Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 173
IONGrConnection / IONJGrConnection Class

The IONGrConnection class represents a connection between the client and the ION
Server. It allows for the addition of multiple IONGrGraphic classes and has the
primary function of acting as a communication module between the IONGrGraphic
classes and the ION Server.

Class Declaration

Methods

• IONGrConnection() — Constructs an object of the IONGrConnection class.

• addDrawable() — Adds an IONGrDrawable class to this connection.

• connect() — Connects with an ION Server.

• debugMode() — Enables/Disables debug mode.

• disconnect() — Disconnects with an ION Server.

• executeIDLCommand() — Executes a given IDL command on the ION
Server. Control is not returned until the command has been executed.

• getIDLVariable() — Gets the value of an IDL variable on the ION Server.

• removeDrawable() — Removes an IONGrDrawable class from this
connection.

public class IONGrConnection

extends IONGraphicsClient

implements IONGraphicConnection,
IONCommandDoneListener,

IONOutputListener

public class IONJGrConnection

extends IONGraphicsClient

implements IONGraphicConnection,
IONCommandDoneListener,
IONOutputListener
ION Java User’s Guide IONGrConnection / IONJGrConnection Class

174 Chapter 6: ION Java Class and Method Reference
• sendIDLCommand() — Sends an IDL command to the ION Server. Control
is returned as soon as the command has been sent.

• setDrawable() — Sets the current drawable.

• setIDLVariable() — Sets the value of an IDL variable on the ION Server.

IONGrConnection()

The IONGrConnection() method constructs an object of the IONGrConnection class.

Syntax

public IONGrConnection()

Arguments

None.

Example

IONGrConnection con = new IONGrConnection();

addDrawable()

The addDrawable() method adds the specified ION graphic to the connection object.
In turn, the graphic objects sets its reference back to the connection. Once added, the
graphic can communicate with the ION Server and thus request graphics and
information.

Note
When using an IONGrConnection class, it is recommended that you add a drawable
method using addDrawable(). Do not use the parent class
IONGraphicsClient.addIONDrawable since this method does not set the connection
from the drawable method back to the connection.

Syntax

public int addDrawable(IONGrDrawable ionGraphic)

public int addDrawable(IONJGrDrawable ionGraphic)
IONGrConnection / IONJGrConnection Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 175
Return Value

This method returns a reference to the added IONGrDrawable/IONJGrDrawable
object.

Arguments

ionGraphic

An object of the IONGrDrawable class to add to the connection object.

Exceptions

None.

Example

IONGrDrawable draw;
con.addDrawable(draw);

connect()

See “connect()” on page 165.

debugMode()

The debugMode() method enables and disables the debug mode of the class. When
debug mode is enabled, the command log output from the ION Server is displayed in
a window when a Shift-click (shifted mouse button-press) event is detected on the
drawing surface.

When debug mode is enabled, the class will buffer the output information for all
registered drawables sent by the ION Server to the client class.

Syntax

public void debugMode(boolean bEnable)

Arguments

bEnable

If true, the debug mode is enabled, otherwise the debug mode is disabled.
ION Java User’s Guide IONGrConnection / IONJGrConnection Class

176 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

con.debugMode(true);

disconnect()

See “disconnect()” on page 127.

executeIDLCommand()

The executeIDLCommand() method sends an IDL command to the ION Server for
execution. Any graphical output resulting from the IDL command is displayed in the
IONGrDrawable drawing area. Control is not returned to the application until the
command has been executed.

Syntax

public int executeIDLCommand(String sIDLCommand)

Return Value

The function returns 0 if the IDL command executed successfully, or the value of the
IDL system variable !ERROR if the IDL command did not execute successfully.

Arguments

sIDLCommand

A string containing a valid IDL command.

Exceptions

IOException, IONIllegalCommandException, IONSecurityException

Example

try{
con.executeIDLCommand("PLOT, FINDGEN(10)");

}catch(IOException e) {
System.err.println("IO error:"te.getMessage());
IONGrConnection / IONJGrConnection Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 177
}catch(IONIllegalCommandException eIC) {
System.err.println("Illegal Command error:"te.getMessage());

}catch(IONSecurityException eSE) {
System.err.println("Security error:"te.getMessage());

}

getIDLVariable()

See “getIDLVariable()” on page 129.

removeDrawable()

The removeDrawable() method removes a graphic from the connection object. Once
the graphic has been removed from the connection object, the graphic can no longer
communicate with the ION Server.

Syntax

public IONDrawable removeDrawable(IONGrDrawable ionGraphic)

public IONDrawable removeDrawable(IONJGrDrawable ionGraphic)

public IONDrawable removeDrawable(int iGraphic)

Return Value

This method returns a reference to the removed IONGrDrawable object.

Arguments

ionGraphic

An object of the IONGrDrawable class that is being removed from the connection.

iGraphic

A zero-based integer index designating which IONGrDrawable object to remove
from the connection (the IDL window index).

Exceptions

None.

Example

IONGrDrawable draw = con.removeDrawable(iongraphic);
ION Java User’s Guide IONGrConnection / IONJGrConnection Class

178 Chapter 6: ION Java Class and Method Reference
IONGrDrawable draw = con.removeDrawable(1);

sendIDLCommand()

The sendIDLCommand() method asynchronously sends an IDL command to the ION
Server. Control is returned to the application as soon as the command has been sent.

Syntax

public void sendIDLCommand(String sIDLCommand) throws IO Exception

Arguments

sIDLCommand

A string containing a valid IDL command.

Exceptions

IOException

setDrawable()

The setDrawable() method designates which IONGRDrawable object will receive
graphical output from the ION Server.

Syntax

public boolean setDrawable(IONGrDrawable ionGraphic)

public boolean setDrawable(IONJGrDrawable ionGraphic)

public boolean setDrawable(int iGraphic)

Return Value

This routine returns False if the specified drawable is not registered with the
connection, or True otherwise.
IONGrConnection / IONJGrConnection Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 179
Arguments

ionGraphic

An instance of an IONGrDrawable object to set as the current drawable. This graphic
must have been registered with the IONGrConnection object via the addDrawable()
method.

iGraphic

A zero-based integer index designating which IONGrDrawable object to set as the
current drawable. This graphic must have been registered with the IONGrConnection
object via the addDrawable() method.

Exceptions

None.

Example

boolean bSuccess = con.setDrawable(ionGraphic);
boolean bSuccess = con.setDrawable(1);

setIDLVariable()

See “setIDLVariable()” on page 133.
ION Java User’s Guide IONGrConnection / IONJGrConnection Class

180 Chapter 6: ION Java Class and Method Reference
IONGrContour Class

The IONGrContour class produces an IDL-generated contour in a drawing area. The
class allows the user to enter data and set contour attributes at the program level.

Class Declaration

Methods

• IONGrContour() — Constructs an object of the IONGrContour class.

• draw() — Produces and displays the graphic on the drawing surface of this
class.

• getProperty() — Gets the value of a property.

• setProperty() — Sets a property for the graphic.

• setNoErase() — Specifies whether the object should be erased when another
object is drawn.

• setXValue() — Sets the X value of the contour.

• setYValue() — Sets the Y value of the contour.

• setZValue() — Sets the Z data of the contour.

IONGrContour()

The IONGrContour() method constructs an IONGrContour object.

Syntax

IONGrContour()

IONGrContour(int Z[][])

IONGrContour(float Z[][])

IONGrContour(double Z[][])

IONGrContour(int Z[])

public class IONGrContour

extends IONGrGraphic
IONGrContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 181
IONGrContour(float Z[])

IONGrContour(double Z[])

IONGrContour(String sName)

IONGrContour(int Z[], int X[], int Y[])

IONGrContour(int Z[][], int X[], int Y[])

IONGrContour(float Z[], float X[], float Y[])

IONGrContour(float Z[][], float X[], float Y[])

IONGrContour(double Z[], double X[], double Y[])

IONGrContour(double Z[][], double X[], double Y[])

IONGrContour(String sZName, String sXName, String sYName)

Arguments

Z

The Z values (data) to use in the contour.

sName, sZName

The name of the IDL variable to use for the Z (data) values of the surface.

X

An array holding the values for the X coordinates of the grid.

Y

An array holding the values for the Y coordinates of the grid.

sXName

The name of the IDL variable holding the values for the X coordinates of the grid.

sYName

The name of the IDL variable holding the values for the Y coordinates of the grid.

Exceptions

None.
ION Java User’s Guide IONGrContour Class

182 Chapter 6: ION Java Class and Method Reference
draw()

Call the draw() method to produce and display a graphic in the drawing area that
makes up this object.

Syntax

public void draw(IONGrConnection grConn)

Arguments

grConn

IONGrConnection used to issue the drawing commands to the server.

Exceptions

None.

getProperty()

The getProperty() method retrieves the current value of a property.

Syntax

public IONVariable getProperty(String Property)

Arguments

Property

The name of the property.

Return Value

The function returns the current value of a property.

Properties Supported

The following IDL Contour properties are supported by
IONGrContour.[get,set]Property. Refer to the IDL documentation on keywords
available for use with the CONTOUR procedure for an explanation of each property:
IONGrContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 183
BACKGROUND, CELL_FILL, CHARSIZE, CLIP, CLOSED, COLOR,
C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, DATA, DEVICE, DOWNHILL, FILL, FOLLOW,
FONT, IRREGULAR, LEVELS, MAX_VALUE, MIN_VALUE, NLEVELS,
NOCLIP, NODATA, NOERASE, NORMAL, OVERPLOT,
PATH_DATA_COORDS, PATH_DOUBLE, PATH_FILENAME, PATH_INFO,
PATH_XY, POLAR, POSITION, SUBTITLE, T3D, TICKLEN, TITLE,
TRIANGULATION, XCHARSIZE/YCHARSIZE/ZCHARSIZE,
XGRIDSTYLE/YGRIDSTYLE/ZGRIDSTYLE, XLOG, YLOG,
XMARGIN/YMARGIN/ZMARGIN, XMINOR/YMINOR/ZMINOR,
XRANGE/YRANGE/ZRANGE, XSTYLE/YSTYLE/ZSTYLE,
XTICKFORMAT/YTICKFORMAT/ZTICKFORMAT,
XTICKLEN/YTICKLEN/ZTICKLEN,
XTICKNAME/YTICKNAME/ZTICKNAME, XTICKS/YTICKS/ZTICKS,
XTICKV/YTICKV/ZTICKV, XTITLE/YTITLE/ZTITLE,
XTICKINTERVAL/YTICKINTERVAL/ZTICKINTERVAL,
XTICKLAYOUT/YTICKLAYOUT/ZTICKLAYOUT,
XTICKUNITS/YTICKUNITS/ZTICKUNITS,
XTICK_GET/YTICK_GET/ZTICK_GET, ZAXIS, ZLOG, ZVALUE

Exceptions

None.

Example

IONVariable value = getProperty(Property);

setProperty()

The setProperty() method sets a property for the contour object.

Syntax

public void setProperty(String Property, IONVariable Value)

Arguments

Property

The name of the property to set.
ION Java User’s Guide IONGrContour Class

184 Chapter 6: ION Java Class and Method Reference
Value

The value of the property.

Properties Supported

The IDL Contour properties are supported by IONGrContour.[get,set]Property are
the same as those covered in “getProperty()” on page 182. Refer to the IDL
documentation on keywords available for use with the CONTOUR procedure for an
explanation of each property.

Exceptions

None.

setNoErase()

The setNoErase() method of the IONGrContour class overrides setNoErase() in the
IONGrGraphic class. See “setNoErase()” on page 201 for the description and syntax
of this method.

setXValue()

The setXValue() method resets the X value of the contour.

Syntax

public void setXValue(int X[])

public void setXValue(float X[])

public void setXValue(double X[])

public void setXValue(String sName)

Arguments

X

The new X value of the contour.

sName

The name of the IDL variable that contains the new X value of the surface.
IONGrContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 185
Exceptions

None.
ION Java User’s Guide IONGrContour Class

186 Chapter 6: ION Java Class and Method Reference
setYValue()

The setYValue() method resets the Y value of the contour.

Syntax

public void setYValue(int Y[])

public void setYValue(float Y[])

public void setYValue(double Y[])

public void setYValue(String sName)

Arguments

Y

The new Y value of the contour.

sName

The name of the IDL variable that contains the new Y value of the contour.

Exceptions

None.

setZValue()

The setZValue() method resets the Z value of the contour.

Syntax

public void setZValue(int Z[])

public void setZValue(float Z[])

public void setZValue(double Z[])

public void setZValue(int Z[][])

public void setZValue(float Z[][])

public void setZValue(double Z[][])

public void setZValue(String sName)
IONGrContour Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 187
Arguments

Z

The new Z value of the contour.

sName

The name of the IDL variable that contains the new Z value of the contour.

Exceptions

None.
ION Java User’s Guide IONGrContour Class

188 Chapter 6: ION Java Class and Method Reference
IONGrDrawable / IONJGrDrawable Class

Objects of the IONGrDrawable class represent a drawing area for IDL-produced
graphics that can be part of a Java AWT. The IONGrDrawable can act alone as a
drawing area or it can contain many IONGrGraphic objects. The way in which
multiple Graphic objects are displayed in the drawable can be controlled using
setNoErase() and setMulti().

Class Declaration

Methods

• IONGrDrawable() / IONJGrDrawable() — Constructs an object of the
IONGrDrawable class.

• addGraphic() — Adds a graphic object to be drawn.

• debugMode() — Enables/Disables the debug mode of the class.

• draw() — Draws all graphic objects in the drawable.

• executeIDLCommand() — Executes an IDL command on the ION Server.

• getConnection() — Gets the connection object associated with this drawable.

• isConnected() — Returns true if the drawable is associated with a connection.

• removeGraphic() — Removes a graphic object from the drawable.

• resetMulti() — Resets “multi mode” to one visible drawable at a time.

• sendIDLCommand() — Sends an IDL command to the ION Server.

• setConnection() — Associates this IONGrDrawable object with an
IONGraphicConnection.

public class IONGrDrawable

extends IONCanvas

implements java.awt.event.MousesListener

public class IONJGrDrawable

extends IONJCanvas

implements java.awt.event.MousesListener
IONGrDrawable / IONJGrDrawable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 189
• setMulti() — Specifies how multiple graphic objects will be drawn in the
server.

• setNoErase() — Specifies whether the drawable should be erased when new
graphic is drawn.

Subclasses

IONContour / IONJContour Class, IONMap / IONJMap Class, IONPlot / IONJPlot
Class, IONSurface / IONJSurface Class

IONGrDrawable() / IONJGrDrawable()

The IONGrDrawable() method constructs an IONGrDrawable object of a specified
size.

Syntax

public IONGrDrawable(int iWidth, int iHeight)

public IONJGrDrawable(int iWidth, int iHeight)

Arguments

iWidth

The width of the drawing area.

iHeight

The height of the drawing area.

Exceptions

None.

addGraphic()

The addGraphic() method adds an IONGrGraphic to the drawable. Calling the draw()
method causes all the graphics added in this manner to be displayed in the drawing
area.

Syntax

public void addGraphic(IONGrGraphic ionGraphic)
ION Java User’s Guide IONGrDrawable / IONJGrDrawable Class

190 Chapter 6: ION Java Class and Method Reference
Arguments

ionGraphic

Graphic object to add.

Exceptions

None.

Example

addGraphic(ionGraphic);

debugMode()

The debugMode() method enables and disables the debug mode of the class. When
debug mode is enabled, the command log output from the ION Server is displayed in
a window when a Shift-click (shifted mouse button-press) event is detected on the
drawing surface.

When debug mode is enabled, the class will buffer the output information for all
registered drawables sent by the ION Server to the client class.

Syntax

public void debugMode(boolean bEnable)

Arguments

bEnable

If true, the debug mode is enabled, otherwise the debug mode is disabled.

Example

con.debugMode(true);
IONGrDrawable / IONJGrDrawable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 191
draw()

The draw() method draws all the graphics objects associated with this drawable. If
there are no graphics objects associated, nothing happens.

Syntax

public void draw()

Arguments

None.

Exceptions

None.

executeIDLCommand()

The executeIDLCommand() method sends an IDL command to the ION Server for
execution. The call returns when the command has finished executing. Any resultant
graphics is displayed in the IONGraphic drawing area.

Syntax

public int executeIDLCommand(String sIDLCommand)

Return Value

The function returns 0 if the IDL command executed successfully, or the value of the
IDL system variable !ERROR if the IDL command did not execute successfully.

Arguments

sIDLCommand

A string containing a valid IDL command.

Exceptions

IOException, IONIllegalCommandException, IONSecurityException
ION Java User’s Guide IONGrDrawable / IONJGrDrawable Class

192 Chapter 6: ION Java Class and Method Reference
getConnection()

The getConnection() method is used to retrieve the IONGraphicConnection object
with which this object is associated.

Syntax

public IONGraphicConnection getConnection()

Return Value

Returns the IONGraphicConnection object that this object is associated with. If no
connection is associated with this object null is returned.

Arguments

None.

Exceptions

None.

Example

IONGraphicConnection conn = getConnection();

isConnected()

The isConnected() method is used to determine whether the drawable is associated
with an IONGraphicConnection.

Syntax

public boolean isConnected()

Return Value

The method returns true if the drawable is associated with an
IONGraphicConnection, and false otherwise.

Arguments

None.
IONGrDrawable / IONJGrDrawable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 193
Exceptions

None.

Example

boolean connected = isConnected();

removeGraphic()

The removeGraphic() method removes an IONGrGraphic from the drawable.

Syntax

public boolean removeGraphic(IONGrGraphic ionGraphic)

Return Value

The method returns true on success or false if the specified graphic is not currently
part of the system.

Arguments

ionGraphic

A graphic to remove from the drawable.

Exceptions

None.

Example

removeGraphic(ionGraphic);

resetMulti()

The resetMulti() method resets the !P.multi system variable to 0 (one plot at a time,
using the entire drawing area).

Syntax

public void resetMulti()
ION Java User’s Guide IONGrDrawable / IONJGrDrawable Class

194 Chapter 6: ION Java Class and Method Reference
Arguments

None.

Exceptions

None.

sendIDLCommand()

The sendIDLCommand() method asynchronously sends an IDL command to the ION
Server for execution. The IDL command is posted to the server for execution and the
function immediately returns. Notification of the commands completion is performed
via the IONCommandDoneListener interface. Control is returned to the application
as soon as the command has been sent.

Syntax

public void sendIDLCommand(String sIDLCommand)

Arguments

sIDLCommand

The IDL Command that is to be executed on the ION Server. The use of the spawn
command and the line continuation character ($) is prohibited (for security reasons,
and because they can hang the server).

Exceptions

IOException

setConnection()

The setConnection() method associates this IONGrDrawable object with an
IONGraphicConnection.

Syntax

public void setConnection(IONGraphicConnection ionConnection)
IONGrDrawable / IONJGrDrawable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 195
Arguments

ionConnection

The connection with which to associate this IONGrDrawable object.

Exceptions

None.

setMulti()

The setMulti() method sets the !P.multi system variable that determines how multiple
IDL plots or IONGrGraphics objects are displayed on the drawing area.

Syntax

public void setMulti(int iMulti[])

Arguments

iMulti

Array defining the layout. See the IDL documentation for more information.

Exceptions

None.

setNoErase()

The setNoErase() method specifies whether or not the drawable should be erased
between IONGrGraphic objects when the draw() method is called.

Syntax

public void setNoErase(boolean bNoErase)

Arguments

bNoErase

If true, the drawing area should not be erased.
ION Java User’s Guide IONGrDrawable / IONJGrDrawable Class

196 Chapter 6: ION Java Class and Method Reference
Exceptions

None.
IONGrDrawable / IONJGrDrawable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 197
IONGrGraphic Class

The IONGrGraphic abstract class implements methods that are used by sub-classes to
manage and store properties.

Class Declaration

Methods

• IONGrGraphic() — Constructs an object of the IONGrGraphic class.

• draw() — Draws the object.

• getProperty() — Gets the value of the given property.

• getPropertyNames() — Gets the names of the properties.

• getPropertyString() — Gets a string that represents the properties. This string
can then used with an IDL command.

• setNoErase() — Specifies whether the object should be erased when another
object is drawn.

• setProperty() — Sets the value of a property in the property list.

Subclasses

IONGrContour Class, IONGrMap Class, IONGrMapContinents Class,
IONGrMapGrid Class, IONGrMapImage Class, IONGrPlot Class, IONGrSurface
Class

IONGrGraphic()

The IONGrGraphic() method constructs an object of the IONGrGraphic class.

Syntax

public IONGrGraphic()

public abstract class IONGrGraphic

extends Object
ION Java User’s Guide IONGrGraphic Class

198 Chapter 6: ION Java Class and Method Reference
Arguments

None.

Exceptions

None.

draw()

The draw() method is defined by sub-classes to issue the appropriate IDL command
to draw the graphic object.

Syntax

public void draw(IONGraphicConnection con)

Arguments

con

IONGraphicConnection used to issue the drawing commands to the server.

Exceptions

None.

Example

draw(con);

getProperty()

The getProperty() method returns the value of a property. The property is returned as
an object. It is the responsibility of the caller to cast the object to the correct type.

Syntax

public IONVariable getProperty(String sName)
IONGrGraphic Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 199
Arguments

sName

The name of the property.

Exceptions

None.

Example

IONVariable = getProperty(sProperty);

getPropertyNames()

The getPropertyNames() method returns a string that contains the names of all the
properties contained in the object. The string is formatted such that each property
name makes up an IDL keyword. This string can be appended to an IDL graphics
command string

Syntax

public final Enumeration getPropertyNames()

Arguments

None.

Exceptions

None.

getPropertyString()

The getPropertyString() method returns a string that contains the values of all the
properties contained in the object. The string is formatted such that each property
name makes up an IDL keyword and the value of the property is the value of the
keyword. This string can be appended to an IDL graphics command string.

Note
This is a protected method, and can only be accessed from objects that subclass the
IONGrGraphic class.
ION Java User’s Guide IONGrGraphic Class

200 Chapter 6: ION Java Class and Method Reference
Syntax

protected final String getPropertyString()

Arguments

None.

Exceptions

None.

Example

String sProperties = getPropertyString();

registerProperty()

The registerProperty() method is used to register a property name as being valid.
When the setProperty() or getProperty() methods are called, they check the validity
of the object against the list of valid properties.

Note
This is a protected method, and can only be accessed from objects that subclass the
IONGrGraphic class.

Syntax

registerProperty(String PropertyName)

Arguments

PropertyName

The name of the property.

Exceptions

None.

Example

protected registerProperty(PropertyName);
IONGrGraphic Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 201
setNoErase()

The setNoErase() method is defined by subclasses to set the appropriate property for
the graphic object that corresponds to the concept of 'no erase'.

Syntax

public void setNoErase(boolean bFlag)

Arguments

bFlag

If true, the object is not erased when other objects are drawn.

Exceptions

None.

Example

setNoErase(bFlag);

setProperty()

The setProperty() method is used to set the value of a property in the objects property
list. If the property already exists in the property list, its value is replaced, otherwise
the property is added to the property list.

Syntax

public void setProperty(String sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value of the property. This must be an object or an array.
ION Java User’s Guide IONGrGraphic Class

202 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

void setProperty(sProperty, value);
IONGrGraphic Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 203
IONGrMap Class

IONGrMap is an IONGrGraphic that encapsulates the functionality of IDL’s
MAP_SET procedure. IONGrMap is used to set up a drawing area (IONGrDrawable)
to display data on a map projection.

All MAP_SET keywords are accepted except GOODESHOMOLOSINE,
ROBINSON, MILLER_CYLINDRICAL, NAME and REVERSE.

Class Declaration

Methods

• IONGrMap() — Constructs a new map centered at (lat, lon) with rotation rot.

• draw() — Calls the MAP_SET procedure to draw the map projection.

• getProperty() — Retrieves the specified property.

• setLat(), setLon() — Sets the lat/lon on which to center the projection.

• setProperty() — Sets the value of the specified property.

• setRotation() — Sets the rotation of the map projection.

IONGrMap()

Constructs a new map centered at (lat, lon) with rotation rot.

Syntax

public IONGrMap()

public IONGrMap(int lat)

public IONGrMap(float lat)

public IONGrMap(double lat)

public IONGrMap(int lat, int lon)

public IONGrMap(float lat, float lon)

public IONGrMap(double lat, double lon)

public class IONGrMap

extends IONGrGraphic
ION Java User’s Guide IONGrMap Class

204 Chapter 6: ION Java Class and Method Reference
public IONGrMap(int lat, int lon, int rot)

public IONGrMap(float lat, float lon, float rot)

public IONGrMap(double lat, double lon, double rot)

public IONGrMap(String sLat)

public IONGrMap(String sLat, String sLon)

public IONGrMap(String sLat, String sLon, String sRot)

Arguments

lat

The latitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees north of the equator, and lat must be
in the range -90° ≤ lat ≤ 90°. The default is 0.

lon

The longitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Longitude is measured in degrees east of the Greenwich meridian,
and lon must be in the range -180° ≤ lon ≤ 180°. The default is 0.

rot

The angle through which the North direction should be rotated around the line L
between the Earth’s center and the point (lat, lon). This angle is measured in degrees
with the positive direction being clockwise around the line L, and must be in the
range -180° ≤ rot ≤ 180°. The default is 0.

If the center of the map is at the North pole, North is in the direction lon + 180°. If the
origin is at the South pole, North is in the direction lon.

sLat, sLon, sRot

Strings representing the latitude, longitude, and rotation.

Exceptions

None.

draw()

The draw() method calls the IDL MAP_SET procedure to draw the map projection.
IONGrMap Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 205
Syntax

public void draw(IONGraphicConnection grConn)

Arguments

grConn

The name of the connection.

Exceptions

None.

getProperty()

The getProperty() method retrieves the value of the specified property.

Syntax

public final IONVariable getProperty(Sting sName)

Arguments

sName

The name of the property to retrieve.

Properties Supported

The following IDL map properties are supported by IONGrMap.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the MAP_SET
procedure for an explanation of each property:

Projection Types: AITOFF, ALBERS, AZIMUTHAL, CONIC, CYLINDRICAL,
GNOMIC, GOODESHOMOLOSINE, HAMMER, LAMBERT, MERCATOR,
MILLER_CYLINDRICAL, MOLLEWIDE, ORTHOGRAPHIC, ROBINSON,
SATELLITE, SINUSOIDAL, STEREOGRAPHIC, TRANSVERSE_MERCATOR

Map Characteristics: ADVANCE, CHARSIZE, CLIP, COLOR, CONTINENTS,
CON_COLOR, HIRES, E_CONTINENTS, E_GRID, E_HORIZON,
GLINESTYLE, GRID, HORIZON, LABEL, LATALIGN, LATDEL, LATLAB,
LONDEL, LONLAB, MLINESTYLE, NAME, NOBORDER, NOERASE,
REVERSE, TITLE, USA, XMARGIN, YMARGIN
ION Java User’s Guide IONGrMap Class

206 Chapter 6: ION Java Class and Method Reference
Projection Parameters: CENTRAL_AZIMUTH, ELLIPSOID, ISOTROPIC,
LIMIT, SAT_P, SCALE, STANDARD_PARALLELS

Graphics: POSITION, T3D, ZVALUE

Exceptions

None.

setLat(), setLon()

Sets the lat/lon on which to center the projection.

Syntax

public void setLat(int lat)

public void setLat(float lat)

public void setLat(double lat)

public void setLat(String lat)

public void setLon(int lon)

public void setLon(float lon)

public void setLon(double lon)

public void setLon(String lon)

Arguments

lat

The latitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees north of the equator, and lat must be
in the range -90° ≤ lat ≤ 90°. The default is 0.

lon

The longitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Longitude is measured in degrees east of the Greenwich meridian,
and lon must be in the range -180° ≤ lon ≤ 180°. The default is 0.
IONGrMap Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 207
Exceptions

None.

setProperty()

The setProperty() method sets the specified property to the specified value.

Syntax

public final void setProperty(string sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value of the property to set.

Properties Supported

The IDL Map properties are supported by IONGrMap.[get,set]Property are the same
as those covered in “getProperty()” on page 205. Refer to the IDL documentation on
keywords available for use with the MAP_SET procedure for an explanation of each
property:

Exceptions

None.

setRotation()

Sets the rotation of the map projection.

Syntax

public void setRotation(int rot)

public void setRotation(float rot)

public void setRotation(double rot)
ION Java User’s Guide IONGrMap Class

208 Chapter 6: ION Java Class and Method Reference
public void setRotation(String rot)

Arguments

rot

The angle through which the North direction should be rotated around the line L
between the Earth’s center and the point (lat, lon). This angle is measured in degrees
with the positive direction being clockwise around the line L, and must be in the
range -180° ≤ rot ≤ 180°. The default is 0.

If the center of the map is at the North pole, North is in the direction lon + 180°. If the
origin is at the South pole, North is in the direction lon.

Exceptions

None.
IONGrMap Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 209
IONGrMapContinents Class

An IONGrMapContinents object is an IONGrGraphic that encapsulates the
functionality of IDL’s MAP_CONTINENTS procedure, which is used to draw
continental boundaries, filled continents, political boundaries, coastlines, and rivers
over an existing map projection. This is used in conjunction with an IONGrMap.

All IDL MAP_CONTINENTS keywords are accepted except CONTINENTS,
LIMIT, T3D, AND ZVALUE.

Class Declaration

Methods

• IONGrMapContinents() — Constructs an object of the
IONGrMapContinents class.

• draw() — Calls the MAP_CONTINENTS procedure to add boundaries to the
current map projection.

• getProperty() — Retrieves the specified property.

• setProperty() — Sets the value of the specified property.

IONGrMapContinents()

The IONGrMapContinents() method constructs an object of the
IONGrMapContinents class.

Syntax

public IONGrMapContinents()

Arguments

None.

Exceptions

None.

public class IONGrMapContinents

extends IONGrGraphic
ION Java User’s Guide IONGrMapContinents Class

210 Chapter 6: ION Java Class and Method Reference
draw()

The draw() method calls the IDL MAP_CONTINENTS procedure to add boundaries
to the current map projection.

Syntax

public void draw(IONGraphicConnection grConn)

Arguments

grConn

The name of the connection.

Exceptions

None.

getProperty()

The getProperty() method retrieves the specified value of the property.

Syntax

public final IONVariable getProperty(Sting sName)

Arguments

sName

The name of the property to retrieve.

Properties Supported

The following IDL MAP_CONTINENTS properties are supported by the
IONGrMapContinents.[get,set]Property. Refer to the IDL documentation on
keywords available for use with the MAP_CONTINENTS procedure for an
explanation of each property:

COASTS, COLOR, CONTINENTS, COUNTRIES, FILL_CONTINENTS, HIRES,
LIMIT, MLINESTYLE, ORIENTATION, RIVERS, SPACING, T3D, USA,
ZVALUE
IONGrMapContinents Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 211
Exceptions

None.

Example

setProperty()

The setProperty() method set the specified property to the specified value.

Syntax

public final void setProperty(string sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value to which to set the property.

Properties Supported

The properties supported by IONGrMapContinents.[get,set]Property are the same as
those supported by “getProperty()” on page 210. Refer to the IDL documentation on
keywords available for use with the MAP_CONTINENTS procedure for an
explanation of each property.

Exceptions

None.
ION Java User’s Guide IONGrMapContinents Class

212 Chapter 6: ION Java Class and Method Reference
IONGrMapGrid Class

An IONGrMapGrid object is an IONGrGraphic that encapsulates the functionality of
IDL’s MAP_GRID procedure, which is used to draw lat/lon lines on a map
projection. This is used in conjunction with an IONGrMap.

Class Declaration

Methods

• IONGrMapGrid() — Constructs an object of the IONGrMapGrid class.

• draw() — Calls the MAP_GRID procedure to add a lat/lon grid to the current
map projection.

• getProperty() — Retrieves the specified property.

• setProperty() — Sets the value of the specified property.

IONGrMapGrid()

The IONGrMapGrid() method constructs an object of the IONGrMapGrid class.

Syntax

public IONGrMapGrid()

Arguments

None.

Exceptions

None.

draw()

The draw() method calls the MAP_GRID procedure to add a lat/lon grid to the
current map projection.

public class IONGrMapGrid

extends IONGrGraphic
IONGrMapGrid Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 213
Syntax

public void draw(IONGraphicConnection grConn)

Arguments

grConn

The name of the connection.

Exceptions

None.

getProperty()

The getProperty() method retrieves the value of the specified property.

Syntax

public final IONVariable getProperty(Sting sName)

Argument

sName

The name of the property to retrieve.

Properties Supported

The following IDL MAP_GRID properties are supported by
IONGrMapGrid.[get,set]Property. Refer to the IDL documentation on keywords
available for use with the MAP_GRID procedure for an explanation of each property:

BOX_AXES, CHARSIZE, CLIP_TEXT, COLOR, FILL_HORIZON,
GLINESTYLE, GLINETHICK, HORIZON, INCREMENT, LABEL, LATALIGN,
LATDEL, LATLAB, LATNAMES, LATS, LONALIGN, LONDEL, LONLAB,
LONNAMES, LONS, NO_GRID, ORIENTATION, T3D, ZVALUE

Exceptions

None.
ION Java User’s Guide IONGrMapGrid Class

214 Chapter 6: ION Java Class and Method Reference
setProperty()

The setProperty() method sets the specified property to the specified value.

Syntax

public final void setProperty(string sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value to which to set the property.

Properties Supported

The IDL MAP_GRID properties supported by the IONGrMapGrid.[get,set]Property
are the same as those supported by “getProperty()” on page 213. Refer to the IDL
documentation on keywords available for use with the MAP_GRID procedure for an
explanation of each property.

Exceptions

None.
IONGrMapGrid Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 215
IONGrMapImage Class

IONGrMapImage is an IONGrGraphic that encapsulates the functionality of IDL’s
MAP_IMAGE procedure, which projects an image onto a map projection. This is
used in conjunction with an IONGrMap.

All IDL 5.4 MAP_IMAGE keywords are accepted.

Class Declaration

Methods

• IONGrMapImage() — Constructs an object of the IONGrMapImage class.

• draw() — Calls the MAP_IMAGE procedure to project an image onto the
current map projection.

• getProperty() — Retrieves the specified property.

• setImage() — Sets the image that will be projected. It can either be in the form
of a two dimensional array or the name of the IDL variable.

• setProperty() — Sets the value of the specified property.

• setStart() — Defines the coordinates of the lower left corner of the image.

IONGrMapImage()

The IONGrMapImage() method constructs an object of the IONGrMapImage class.

Syntax

public IONGrMapImage()

public IONGrMapImage(byte image[][])

public IONGrMapImage(int image[][])

public IONGrMapImage(float image[][])

public IONGrMapImage(double image[][])

public IONGrMapImage(String image)

public class IONGrMapImage

extends IONGrGraphic
ION Java User’s Guide IONGrMapImage Class

216 Chapter 6: ION Java Class and Method Reference
Arguments

image

A two-dimensional array containing the image to be overlaid on the map, or a
variable containing an array.

Exceptions

None.

draw()

The draw() method calls the MAP_IMAGE procedure to project an image onto the
current map projection.

Syntax

public void draw(IONGraphicConnection grConn)

Arguments

grConn

The name of the connection.

Exceptions

None.

getProperty()

The getProperty() method retrieves the specified value of the property.

Syntax

public final IONVariable getProperty(Sting sName)

Arguments

sName

The name of the property to retrieve.
IONGrMapImage Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 217
Properties Supported

The following IDL MAP_IMAGE properties are supported by the
IONGrMapImage.[get,set]Property. Refer to the IDL documentation on keywords
available for use with the MAP_IMAGE procedure for an explanation of each
property:

BILINEAR, COMPRESS, LATMAX, LATMIN, LONMAX, LONMIN,
MAX_VALUE, MIN_VALUE, MISSING, SCALE

Exceptions

None.

setImage()

The setImage() method defines the image that will be projected. It can either be in the
form of a two dimensional array or the name of the IDL variable.

Syntax

public void setImage(byte image[][])

public void setImage(int image[][])

public void setImage(float image[][])

public void setImage(double image[][])

public void setImage(String image)

Arguments

image

A two-dimensional array containing the image to be overlaid on the map, or a
variable containing an array.

Exceptions

None.
ION Java User’s Guide IONGrMapImage Class

218 Chapter 6: ION Java Class and Method Reference
setProperty()

The setProperty() method sets the specified property to the specified value.

Syntax

public final void setProperty(string sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value of the property.

Properties Supported

The IDL map properties are supported by IONGrMapImage.[get,set]Property are the
same as those covered in “getProperty()” on page 216. Refer to the IDL
documentation on keywords available for use with the MAP_IMAGE procedure for
an explanation of each property.

Exceptions

None.

setStart()

The setStart() method defines the coordinates of the lower left corner of the image.

Syntax

public void setStart(int x, int y)

public void setStart(float x, float y)

public void setStart(double x, double y)
IONGrMapImage Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 219
Arguments

x

The x coordinate position of the left edge of the image.

y

The y coordinate position of the left edge of the image.

Exceptions

None.
ION Java User’s Guide IONGrMapImage Class

220 Chapter 6: ION Java Class and Method Reference
IONGrPlot Class

The IONGrPlot class produces an IDL generated plot in a drawing area. The class
allows the user to enter data and plot attributes at the program level.

Class Declaration

Methods

• IONGrPlot() — Constructs an object of the IONPlot class.

• draw() — Produces the output graphic and displays the graphic on the
drawing surface of this class.

• getProperty() — Gets the value of a property.

• setNoErase() — Specifies whether the object should be erased when another
object is drawn.

• setProperty() — Sets a property for the graphic.

• setXValue() — Sets the X value of the plot.

• setYValue() — Sets the Y value of the plot.

IONGrPlot()

The IONGrPlot() method constructs an object of the IONGrPlot class.

Syntax

public IONGrPlot()

public IONGrPlot(int X[])

public IONGrPlot(float X[])

public IONGrPlot(double X[])

public IONGrPlot(String sName)

public IONGrPlot(int X[], int Y[])

public IONGrPlot(float X[], float Y[])

public class IONGrPlot

extends IONGrGraphic
IONGrPlot Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 221
public IONGrPlot(double X[], double Y[])

public IONGrPlot(String sXName, String sYName)

Arguments

X

X values of the plot.

Y

Y values of the plot.

sXName

The name of an IDL variable to use for the X values in this plot.

sYName

The name of an IDL variable to use for the Y values in this plot.

Exceptions

None.

draw()

The draw() method displays the plot in the drawing area that makes up this object.

Syntax

public void draw(IONGraphicConnection grConn)

Arguments

grConn

IONGraphicConnection used to issue the drawing commands to the server.

Exceptions

None.
ION Java User’s Guide IONGrPlot Class

222 Chapter 6: ION Java Class and Method Reference
Example

draw(con);

getProperty()

The getProperty() method retrieves the current value of the specified property.

Syntax

public IONVariable getProperty(String Property)

Arguments

Property

The name of the property.

Return Value

The function returns the current value of a property.

Properties Supported

The following IDL Plot properties are supported by IONGrPlot.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the PLOT
procedure for an explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT,
ISOTROPIC, LINESTYLE, MAX_VALUE, MIN_VALUE, NOCLIP, NODATA,
NOERASE, NORMAL, NSUM, POLAR, POSITION, PSYM, SUBTITLE,
SYMSIZE, T3D, TICKLEN, TITLE, XCHARSIZE/YCHARSIZE/ZCHARSIZE,
XGRIDSTYLE/YGRIDSTYLE/ZGRIDSTYLE, XLOG,
XMARGIN/YMARGIN/ZMARGIN, XMINOR/YMINOR/ZMINOR,
XRANGE/YRANGE/ZRANGE, XSTYLE/YSTYLE/ZSTYLE,
XTICKFORMAT/YTICKFORMAT/ZTICKFORMAT,
XTICKINTERVAL/YTICKINTERVAL/ZTICKINTERVAL,
XTICKLAYOUT/YTICKLAYOUT/ZTICKLAYOUT,
XTICKLEN/YTICKLEN/ZTICKLEN,
XTICKNAME/YTICKNAME/ZTICKNAME, XTICKS/YTICKS/ZTICKS,
XTICKUNITS/YTICKUNITS/ZTICKUNITS, XTICKV/YTICKV/ZTICKV,
XTICK_GET/YTICK_GET/ZTICK_GET, XTITLE/YTITLE/ZTITLE, YLOG,
YNOZERO, ZVALUE
IONGrPlot Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 223
Exceptions

None.

Examples

IONVariable value = getProperty(Property);

setNoErase()

The setNoErase() method of the IONGrPlot class overrides setNoErase() in the
IONGrGraphic class. See “setNoErase()” on page 201 for the syntax of this method.

setProperty()

The setProperty() method sets a property for the plot object.

Syntax

public void setProperty(String Property, IONVariable Value)

Arguments

Property

The name of the property to set.

Value

The value of the property.

Properties Supported

The properties supported by the IONGrPlot.[get,set]Property are the same as those
supported by the “getProperty()” on page 222. Refer to the IDL documentation on
keywords available for use with the PLOT procedure for an explanation of each
property.

Exceptions

None.
ION Java User’s Guide IONGrPlot Class

224 Chapter 6: ION Java Class and Method Reference
Example

setProperty(Property, Value);

setXValue()

The setXValue() method resets the X value of the plot

Syntax

public void setXValue(int X[])

public void setXValue(float X[])

public void setXValue(double X[])

public void setXValue(String sXname)

Arguments

X

The new X value of the plot.

sXname

The name of an IDL variable to use for the X value.

Exceptions

None.

setYValue()

The setYValue() method resets the Y value of the plot.

Syntax

public void setYValue(int Y[])

public void setYValue(float Y[])

public void setYValue(double Y[])

public void setYValue(String sYname)
IONGrPlot Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 225
Arguments

Y

The new Y value of the plot.

sYname

The name of the IDL variable to use for the Y value.

Exceptions

None.
ION Java User’s Guide IONGrPlot Class

226 Chapter 6: ION Java Class and Method Reference
IONGrSurface Class

The IONGrSurface class produces an IDL-generated surface using SHADE_SURF or
SURFACE in a drawing area. The class allows the user to enter data and set surface
attributes at the program level.

Class Declaration

Methods

• IONGrSurface() — Constructs an object of the IONGrSurface class.

• draw() — Produces the output graphic and displays the graphic on the
drawing surface of this class.

• getProperty() — Gets the value of a property.

• setNoErase() — Specifies whether the object should be erased when another
object is drawn.

• setProperty() — Sets a property for the graphic.

• setXValue() — Sets the X value of the surface.

• setYValue() — Sets the Y value of the surface.

• setZValue() — Sets the Z data of the surface.

IONGrSurface()

The IONGrSurface() method constructs an object of the IONGrSurface class.

Syntax

public IONGrSurface()

public IONGrSurface(int Z[][])

public IONGrSurface(float Z[][])

public IONGrSurface(double Z[][])

public IONGrSurface(int Z[][], int X[], int Y[])

public class IONGrSurface

extends IONGrGraphic
IONGrSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 227
public IONGrSurface(float Z[][], float X[], float Y[])

public IONGrSurface(double Z[][], double X[], double Y[])

public IONGrSurface(String sZname)

public IONGrSurface(String sZname, String sXname, String sYname)

Arguments

Z

Z (data) values for the surface

sName, sZName

Name of the IDL variable to use for the Z (data) of the surface.

X

Array holding the values for the X coordinates of grid.

Y

Array holding the values for the Y coordinates of grid.

sXName

Name of the IDL variable holding the values for X coordinates of the grid.

sYName

Name of the IDL variable holding the values for Y coordinates of the grid.

Exceptions

None.

draw()

The draw() method displays the surface in the drawing area that makes up this object.

Syntax

public void draw(IONGraphicConnection grConn)
ION Java User’s Guide IONGrSurface Class

228 Chapter 6: ION Java Class and Method Reference
Arguments

grConn

IONGraphicConnection used to issue the drawing commands to the server.

Exceptions

None.

getProperty()

The getProperty() method retrieves the current value of the specified property.

Syntax

public IONVariable getProperty(String sName)

Arguments

sName

The name of the property.

Return Value

The function returns the current value of a property.

Properties Supported

The following IDL Surface properties are supported by
IONGrSurface.[get,set]Property. Refer to the IDL documentation on keywords
available for use with the SURFACE procedure for an explanation of each property:

AX, AZ, BACKGROUND, BOTTOM, CHARSIZE, CLIP, COLOR, DATA,
DEVICE, FONT, HORIZONTAL, IMAGE, LEGO, LINESTYLE, LOWER_ONLY,
MAX_VALUE, MIN_VALUE, NOCLIP, NODATA, NOERASE, NORMAL,
PIXELS, POSITION, SAVE, SHADES, SKIRT, SUBTITLE, T3D, TICKLEN,
TITLE, UPPER_ONLY, XLOG/YLOG/ZLOG,
XCHARSIZE/YCHARSIZE/ZCHARSIZE,
XGRIDSTYLE/YGRIDSTYLE/ZGRIDSTYLE,
XMARGIN/YMARGIN/ZMARGIN, XMINOR/YMINOR/ZMINOR,
XRANGE/YRANGE/ZRANGE, XSTYLE/YSTYLE/ZSTYLE,
XTICKFORMAT/YTICKFORMAT/ZTICKFORMAT,
IONGrSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 229
XTICKINTERVAL/YTICKINTERVAL/ZTICKINTERVAL,
XTICKLAYOUT/YTICKLAYOUT/ZTICKLAYOUT,
XTICKLEN/YTICKLEN/ZTICKLEN,
XTICKNAME/YTICKNAME/ZTICKNAME, XTICKS/YTICKS/ZTICKS,
XTICKUNITS/YTICKUNITS/ZTICKUNITS, XTICKV/YTICKV/ZTICKV,
XTICK_GET/YTICK_GET/ZTICK_GET, XTITLE/YTITLE/ZTITLE, ZAXIS,
ZVALUE

Exceptions

None

Example

IONVariable value = getProperty(Property);

setNoErase()

The setNoErase() method of the IONGrSurface class overrides setNoErase() in the
IONGrGraphic class. See “setNoErase()” on page 201 for the syntax of this method.

setProperty()

The setProperty() method sets a property for the surface object.

Syntax

public void setProperty(String sName, IONVariable v)

Arguments

sName

The name of the property to set.

v

The value of the property.

Properties Supported

The properties supported by the IONGrSurface.[get,set]Property as the same as those
supported by the “getProperty()” on page 228 Refer to the IDL documentation on
ION Java User’s Guide IONGrSurface Class

230 Chapter 6: ION Java Class and Method Reference
keywords available for use with the SURFACE procedure for an explanation of each
property.

Exceptions

None.

setXValue()

The setXValue() method resets the X value of the surface.

Syntax

public void setXValue(int X[])

public void setXValue(float X[])

public void setXValue(double X[])

public void setXValue(String sName)

Arguments

X

The new X value of the surface.

sName

The name of the IDL variable that contains the new X value of the surface.

Exceptions

None.

setYValue()

The setYValue() method resets the Y value of the surface.

Syntax

public void setYValue(int Y[])

public void setYValue(float Y[])

public void setYValue(double Y[])
IONGrSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 231
public void setYValue(String sName)

Arguments

Y

The new Y value of the surface.

sName

The name of the IDL variable that contains the new Y value of the surface.

Exceptions

None.

setZValue()

The setZValue() method resets the Z value of the surface.

Syntax

public void setZValue(int Z[][])

public void setZValue(float Z[][])

public void setZValue(double Z[][])

public void setZValue(String sName)

Arguments

Z

The new Z value of the surface.

sName

The name of the IDL variable that contains the new Z value of the surface.

Exceptions

None.
ION Java User’s Guide IONGrSurface Class

232 Chapter 6: ION Java Class and Method Reference
IONMap / IONJMap Class

IONMap is an IONGrDrawable object that creates a map projection on which to
display data. Displayed data can be any combination of IONGrMapImage,
IONGrMapGrid, IONGrMapContinents and IONGrContour objects. Data is
displayed in the order it is added.

The IONJMap class extends the IONJGrDrawable class and contains an IONGrMap
object. It can be inserted into a component tree.

Class Declaration

Methods

• IONMap() / IONJMap() — Constructs a new map centered at (lat, lon) with
rotation rot.

• draw() — Produces and displays the graphic on the drawing surface of this
class.

• getProperty() — Retrieves the specified property.

• setLat(), setLon() — Sets the lat/lon on which to center the projection.

• setProperty() — Sets the value of the specified property.

• setRotation() — Sets the rotation of the map projection.

public class IONMap

extends IONGrDrawable

public class IONJMap

extends IONJGrDrawable
IONMap / IONJMap Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 233
IONMap() / IONJMap()

The IONMap() method constructs a new map centered at (lat, lon) with rotation rot.

Syntax

Note
The following is the syntax for the IONMap() method. For the IONJMap() method,
replace IONMap with IONJMap.

public IONMap(int iWidth, int iHeight)

public IONMap(int iWidth, int iHeight, int lat)

public IONMap(int iWidth, int iHeight, float lat)

public IONMap(int iWidth, int iHeight, double lat)

public IONMap(int iWidth, int iHeight, int lat, int lon)

public IONMap(int iWidth, int iHeight, float lat, float lon)

public IONMap(int iWidth, int iHeight, double lat, double lon)

public IONMap(int iWidth, int iHeight, int lat, int lon, int rot)

public IONMap(int iWidth, int iHeight, float lat, float lon, float rot)

public IONMap(int iWidth, int iHeight, double lat, double lon, double rot)

Arguments

iHeight

The height of the drawing area.

iWidth

The width of the drawing area.

lat

The latitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees north of the equator, and lat must be
in the range -90° ≤ lat ≤ 90°. The default is 0.
ION Java User’s Guide IONMap / IONJMap Class

234 Chapter 6: ION Java Class and Method Reference
lon

The longitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Longitude is measured in degrees east of the Greenwich meridian,
and lon must be in the range -180° ≤ lon ≤ 180°. The default is 0.

rot

The angle through which the North direction should be rotated around the line L
between the Earth’s center and the point (lat, lon). This angle is measured in degrees
with the positive direction being clockwise around the line L, and must be in the
range -180° ≤ rot ≤ 180°. The default is 0.

If the center of the map is at the North pole, North is in the direction lon + 180°. If the
origin is at the South pole, North is in the direction lon.

Exceptions

None.

draw()

The draw() method displays the map projection in the drawing area for this object.

Syntax

public void draw()

Arguments

None.

Exceptions

None.

getProperty()

The getProperty() method retrieves the value of the specified property.

Syntax

public final IONVariable getProperty(String sName)
IONMap / IONJMap Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 235
Arguments

sName

The name of the property to retrieve.

Properties Supported

The following IDL map properties are supported by IONMap.[get,set]Property. Refer
to the IDL documentation on keywords available for use with the MAP_SET
procedure for an explanation of each property:

Projection Types: AITOFF, ALBERS, AZIMUTHAL, CONIC, CYLINDRICAL,
GNOMIC, GOODESHOMOLOSINE, HAMMER, LAMBERT, MERCATOR,
MILLER_CYLINDRICAL, MOLLEWIDE, ORTHOGRAPHIC, ROBINSON,
SATELLITE, SINUSOIDAL, STEREOGRAPHIC, TRANSVERSE_MERCATOR

Map Characteristics: ADVANCE, CHARSIZE, CLIP, COLOR, CONTINENTS,
CON_COLOR, HIRES, E_CONTINENTS, E_GRID, E_HORIZON,
GLINESTYLE, GRID, HORIZON, LABEL, LATALIGN, LATDEL, LATLAB,
LONDEL, LONLAB, MLINESTYLE, NAME, NOBORDER, NOERASE,
REVERSE, TITLE, USA, XMARGIN, YMARGIN

Projection Parameters: CENTRAL_AZIMUTH, ELLIPSOID, ISOTROPIC,
LIMIT, SAT_P, SCALE, STANDARD_PARALLELS

Graphics: POSITION, T3D, ZVALUE

Exceptions

None.

setLat(), setLon()

The setLat()/setLon() methods set the latitude and longitude for the map projection.

Syntax

public void setLat(int lat)

ublic void setLat(float lat)

public void setLat(double lat)

public void setLat(String lat)
ION Java User’s Guide IONMap / IONJMap Class

236 Chapter 6: ION Java Class and Method Reference
public void setLon(int lon)

public void setLon(float lon)

public void setLon(double lon)

public void setLon(String lon)

Arguments

lat

The latitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees north of the equator, and lat must be
in the range -90° ≤ lat ≤ 90°. The default is 0.

lon

The longitude of the point on the Earth’s surface to be mapped to the center of the
projection plane. Longitude is measured in degrees east of the Greenwich meridian,
and lon must be in the range -180° ≤ lon ≤ 180°. The default is 0.

Exceptions

None.

setProperty()

The setProperty() method sets the specified property to the specified value.

Syntax

public final void setProperty(String sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value to which to set the property.
IONMap / IONJMap Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 237
Properties Supported

The properties supported by the IONMap.[get,set]Property are the same as those
supported by “getProperty()” on page 234. Refer to the IDL documentation on
keywords available for use with the MAP_SET procedure for an explanation of each
property.

Exceptions

None.

setRotation()

The setRotation() method sets the rotation for the map projection.

Syntax

public void setRotation(int rot)

public void setRotation(float rot)

public void setRotation(double rot)

public void setRotation(String rot)

Arguments

rot

The angle through which the North direction should be rotated around the line L
between the Earth’s center and the point (lat, lon). This angle is measured in degrees
with the positive direction being clockwise around the line L, and must be in the
range -180° ≤ rot ≤ 180°. The default is 0.

If the center of the map is at the North pole, North is in the direction lon + 180°. If the
origin is at the South pole, North is in the direction lon.

Exceptions

None.
ION Java User’s Guide IONMap / IONJMap Class

238 Chapter 6: ION Java Class and Method Reference
IONMouseListener Interface

The IONMouseListener interface defines the callback methods an object must define
to be notified of mouse events occurring on an object that implements the
IONDrawable interface.

In ION 1.4, this interface uses the AWT event model. It is recommended that you use
the AWT events directly (java.awt.event.MouseListener and/or
java.awt.event.MouseMotionListener). These provide a more robust and
complete solution.

Class Declaration

public interface IONMouseListener

Methods

• mouseMoved() — Called when the mouse moves.

• mousePressed() — Called when a mouse button down event occurs.

• mouseReleased() — Called when a mouse button up event occurs.

Implementing Classes

IONGraphicsClient Class

mouseMoved()

Call the mouseMoved() method when a mouse cursor is moved in a drawable. Note
that the Mouse Listener must have been registered in the drawable prior to calling
mouseMoved().

Syntax

public abstract void mouseMoved(IONDrawable drawable, int X, int Y, long when,
int mask)

Arguments

drawable

The IONDrawable object that the event occurred in.
IONMouseListener Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 239
X

The X location of the mouse.

Y

The Y location of the mouse.

when

The time when the event happened.

mask

Current mouse button state.

Exceptions

None.

mousePressed()

Call the mousePressed() method when a mouse button is pressed in a drawable. Note
that the Mouse Listener must have been registered in the drawable prior to calling
mousePressed().

Syntax

public abstract void mousePressed(IONDrawable drawable, int X, int Y, long when,
int mask)

Arguments

drawable

The IONDrawable object in which the event occurred.

X

The X location of the mouse.

Y

The Y location of the mouse.
ION Java User’s Guide IONMouseListener Interface

240 Chapter 6: ION Java Class and Method Reference
when

The time when the event happened.

mask

The button that was pressed.

Exceptions

None.

mouseReleased()

Call the mouseReleased() method when a mouse button is released in a drawable.
Note that the Mouse Listener must have been registered in the drawable prior to
calling mouseReleased().

Syntax

public abstract void mouseReleased(IONDrawable drawable, int X, int Y, long when,
int mask)

Arguments

drawable

The IONDrawable object in which the event occurred.

X

The X location of the mouse.

Y

The Y location of the mouse.

when

The time when the event happened.

mask

Current mouse button state. The left mouse button is represented by 1 (one), the
middle mouse button by 2, and the right mouse button by 4.
IONMouseListener Interface ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 241
In Unix versions of Java, it is impossible to determine which mouse button was
released if more than one button was pressed before the button release. As a result, on
Unix platforms ION reports the following button release events:

Button release events are reported correctly in Windows versions of Java.

Exceptions

None.

Buttons
Pressed

Button Release
Reported by ION

left and middle left

left and right left

middle and right right

left, middle, and
right

left
ION Java User’s Guide IONMouseListener Interface

242 Chapter 6: ION Java Class and Method Reference
IONOffScreen Class

Objects of the IONOffScreen class represent an invisible drawing area on which
graphic output can be placed.

Class Declaration

Methods

• IONOffScreen() — Constructs an object of the IONOffScreen class.

• createImage() — Creates an offscreen image.

• getImage() — Returns the image that is being drawn.

• getIONGraphics() — Returns an ION graphics context for the device.

See also the description of the IONDrawable Interface.

IONOffScreen()

The IONOffScreen() method constructs an object of the IONOffScreen class.

Syntax

public IONOffScreen(int width, int height, Component comp)

Arguments

width

The width of the drawing area.

height

The height of the drawing area.

public class IONOffScreen

extends Object

implements IONDrawable
IONOffScreen Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 243
comp

A visible used to create images. This needs to be a component that is already visible
on the users screen in order for the OffScreen to be properly created.

Exceptions

None.

Example

IONOffScreen offscreen = new IONOffScreen();

createImage()

Use the createImage() method to create an image of a given size.

Syntax

public abstract Image createImage(int width, int height)

Arguments

width

The width of the requested image

height

The height of the requested image

Exceptions

None

Example

Image im = draw.createImage(300, 300);
ION Java User’s Guide IONOffScreen Class

244 Chapter 6: ION Java Class and Method Reference
getImage()

The getImage() method returns the image of the current drawing area.

Syntax

public abstract Image getImage()

Arguments

None

Exceptions

None

Example

Image im = draw.getImage();

getIONGraphics()

The getIONGraphics() method returns a Graphics object that you can use to get
graphics information on ION’s drawing buffer or draw directly to. Unlike the
getGraphics() method, getIONGraphics() allows you to affect the actual IDL
drawable area. For example, you would use the getIONGraphics() method when
manipulating the buffer using the COPY keyword to IDL’s DEVICE procedure.

Syntax

public abstract Graphics getIONGraphics()

Arguments

None

Exceptions

None

Example

Graphics g = draw.getIONGraphics();
IONOffScreen Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 245
IONOutputListener Interface

The IONOutputListener interface defines the method that a class must implement to
receive ION Server output text. The object must register itself with the
addIONOutputListener() call.

Class Declaration

public interface IONOutputListener

Methods

• IONOutputText() — Retrieves a line of text from the ION Server.

Implementing Classes

IONGrConnection / IONJGrConnection Class, IONMapApplet

Example

For a simple example using IONOutputListener, see the “Version” example on the
page of “Basic ION Java Applets” provided with the ION Java installation. See
“Running the ION Java Examples” on page 48 for more information.

IONOutputText()

The IONOutputText() method is called when a line of output text is available from
the ION Server.

Syntax

public abstract void IONOutputText(String sLine)

Arguments

sLine

A line of output text from the ION Server.

Exceptions

None.
ION Java User’s Guide IONOutputListener Interface

246 Chapter 6: ION Java Class and Method Reference
IONPlot / IONJPlot Class

The IONPlot class extends the IONGrDrawable class and contains an IONGrPlot to
provide a easy way of drawing IDL plots. It can be inserted into an AWT tree.

The IONJPlot class extends the IONJGrDrawable class and contains an IONGrPlot
object. It can be inserted into a component tree.

Class Declaration

Methods

• IONPlot() / IONJPlot() — Constructs an object of the IONPlot class.

• draw() — Produces and displays the graphic on the drawing surface of this
class.

• getProperty() — Gets the value of a property.

• setProperty() — Sets a property for the graphic.

• setXValue() — Sets the X value of the plot.

• setYValue() — Sets the Y value of the plot.

IONPlot() / IONJPlot()

The IONPlot() method constructs an object of the IONPlot class.

Syntax

Note
The following is the syntax for the IONPlot() method. For the IONJPlot() method,
replace IONPlot with IONJPlot.

public IONPlot(int iWidth, int iHeight)

public class IONPlot

extends IONGrDrawable

public class IONJPlot

extends IONJGrDrawable
IONPlot / IONJPlot Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 247
public IONPlot(int iWidth, int iHeight, int X[])

public IONPlot(int iWidth, int iHeight, float X[])

public IONPlot(int iWidth, int iHeight, double X[])

public IONPlot(int iWidth, int iHeight, String sName)

public IONPlot(int iWidth, int iHeight, int X[], int Y[])

public IONPlot(int iWidth, int iHeight, float X[], float Y[])

public IONPlot(int iWidth, int iHeight, double X[], double Y[])

public IONPlot(int iWidth, int iHeight, String sXName, String sYName)

Arguments

iWidth

The width of the plot.

iHeight

The height of the plot.

X

The X values of the plot.

Y

The Y values of the plot.

sXName

The name of an IDL variable to use for the X values of this plot.

sYName

The name of an IDL variable to use for the Y values of this plot.

Exceptions

None.
ION Java User’s Guide IONPlot / IONJPlot Class

248 Chapter 6: ION Java Class and Method Reference
draw()

The draw() method produces and displays a graphic in the drawing area that makes
up this object.

Syntax

public void draw()

Arguments

None.

Exceptions

None.

getProperty()

The getProperty() method retrieves the current value of the specified property.

Syntax

public final IONVariable getProperty(String sName)

Arguments

sName

The name of the property.

Properties Supported

The following IDL Plot properties are supported by IONPlot.[get,set]Property. Refer
to the IDL documentation on keywords available for use with the PLOT procedure
for an explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT,
ISOTROPIC, LINESTYLE, MAX_VALUE, MIN_VALUE, NOCLIP, NODATA,
NOERASE, NORMAL, NSUM, POLAR, POSITION, PSYM, SUBTITLE,
SYMSIZE, T3D, TICKLEN, TITLE, XCHARSIZE/YCHARSIZE/ZCHARSIZE,
XGRIDSTYLE/YGRIDSTYLE/ZGRIDSTYLE, XLOG,
XMARGIN/YMARGIN/ZMARGIN, XMINOR/YMINOR/ZMINOR,
XRANGE/YRANGE/ZRANGE, XSTYLE/YSTYLE/ZSTYLE,
IONPlot / IONJPlot Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 249
XTICKFORMAT/YTICKFORMAT/ZTICKFORMAT,
XTICKINTERVAL/YTICKINTERVAL/ZTICKINTERVAL,
XTICKLAYOUT/YTICKLAYOUT/ZTICKLAYOUT,
XTICKLEN/YTICKLEN/ZTICKLEN,
XTICKNAME/YTICKNAME/ZTICKNAME, XTICKS/YTICKS/ZTICKS,
XTICKUNITS/YTICKUNITS/ZTICKUNITS, XTICKV/YTICKV/ZTICKV,
XTICK_GET/YTICK_GET/ZTICK_GET, XTITLE/YTITLE/ZTITLE, YLOG,
YNOZERO, ZVALUE

Exceptions

None.

Example

IONVariable value = getProperty(Property);

setProperty()

The setProperty() method sets a property for the plot object.

Syntax

public final void setProperty(String sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value of the property.

Properties Supported

The IDL Plot properties supported by IONPlot.[get,set]Property are the same as those
supported by “getProperty()” on page 248. Refer to the IDL documentation on
keywords available for use with the PLOT procedure for an explanation of each
property.
ION Java User’s Guide IONPlot / IONJPlot Class

250 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

setXValue()

The setXValue() method resets the X value of the plot.

Syntax

public void setXValue(int X[])

public void setXValue(float X[])

public void setXValue(double X[])

public void setXValue(String sName)

Arguments

X

The new X value of the plot.

sName

The name of an IDL variable to use for the X value.

Exceptions

None

setYValue()

The setYValue() method resets the Y value of the plot.

Syntax

public void setYValue(int Y[])

public void setYValue(float Y[])

public void setYValue(double Y[])

public void setYValue(String sName)
IONPlot / IONJPlot Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 251
Argument

Y

The new Y value of the plot.

sName

The name of the IDL variable to use for the Y value.

Exceptions

None.
ION Java User’s Guide IONPlot / IONJPlot Class

252 Chapter 6: ION Java Class and Method Reference
IONSurface / IONJSurface Class

The IONSurface class extends the IONGrDrawable class and contains an
IONGrSurface object to provide a easy way of drawing IDL surfaces. It can be
inserted into an AWT tree.

The IONJSurface class extends the IONJGrDrawable class and contains an
IONGrSurface object. It can be inserted into a component tree.

Class Declaration

Methods

• IONSurface() / IONJSurface() — Constructs an object of the IONSurface
class.

• draw() — Produces and displays the graphic on the drawing surface of this
class.

• getProperty() — Gets the value of a property.

• setNoErase() — Specifies whether the object should be erased when another
object is drawn.

• setProperty() — Sets a property for the graphic.

• setXValue() — Sets the X value of the surface.

• setYValue() — Sets the Y value of the surface.

• setZValue() — Sets the Z data of the surface.

public class IONSurface

extends IONGrDrawable

public class IONJSurface

extends IONJGrDrawable
IONSurface / IONJSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 253
IONSurface() / IONJSurface()

The IONSurface() method constructs an object of the IONSurface class.

Syntax

Note
The following is the syntax for the IONSurface() method. For the IONJSurface()
method, replace IONSurface with IONJSurface.

public IONSurface(int iWidth, int iHeight)

public IONSurface(int iWidth, int iHeight, int Z[][])

public IONSurface(int iWidth, int iHeight, float Z[][])

public IONSurface(int iWidth, int iHeight, double Z[][])

public IONSurface(int iWidth, int iHeight, String sName)

public IONSurface(int iWidth, int iHeight, int Z[][], int X[], int Y[])

public IONSurface(int iWidth, int iHeight, float Z[][], float X[], float Y[])

public IONSurface(int iWidth, int iHeight, double Z[][], double X[], double Y[])

public IONSurface(int iWidth, int iHeight, String sZName, String sXName, String
sYName)

Arguments

iWidth

The width of the plot.

iHeight

The height of the plot.

Z

The Z (data) values for the surface.

sName, sZName

The name of the IDL variable to use for the Z (data) values of the surface.
ION Java User’s Guide IONSurface / IONJSurface Class

254 Chapter 6: ION Java Class and Method Reference
X

An array holding the values for the X coordinates of the grid.

Y

An array holding the values for the Y coordinates of the grid.

sXName

The name of the IDL variable holding the values for the X coordinates of the grid.

sYName

The name of the IDL variable holding the values for the Y coordinates of the grid.

Exceptions

None.

draw()

The draw() method produces and displays a graphic in the drawing area that makes
up this object.

Syntax

public void draw()

Arguments

None.

Exceptions

None.

getProperty()

The getProperty() method retrieves the current value of the specified property.

Syntax

public final IONVariable getProperty(String sName)
IONSurface / IONJSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 255
Arguments

sName

The name of the property.

Properties Supported

The following IDL Surface properties are supported by
IONSurface.[get,set]Property. Refer to the IDL documentation on keywords
available for use with the SURFACE procedure for an explanation of each property:

AX, AZ, BACKGROUND, BOTTOM, CHARSIZE, CLIP, COLOR, DATA,
DEVICE, FONT, HORIZONTAL, IMAGE, LEGO, LINESTYLE, LOWER_ONLY,
MAX_VALUE, MIN_VALUE, NOCLIP, NODATA, NOERASE, NORMAL,
PIXELS, POSITION, SAVE, SHADES, SKIRT, SUBTITLE, T3D, TICKLEN,
TITLE, UPPER_ONLY, XLOG/YLOG/ZLOG,
XCHARSIZE/YCHARSIZE/ZCHARSIZE,
XGRIDSTYLE/YGRIDSTYLE/ZGRIDSTYLE,
XMARGIN/YMARGIN/ZMARGIN, XMINOR/YMINOR/ZMINOR,
XRANGE/YRANGE/ZRANGE, XSTYLE/YSTYLE/ZSTYLE,
XTICKFORMAT/YTICKFORMAT/ZTICKFORMAT,
XTICKINTERVAL/YTICKINTERVAL/ZTICKINTERVAL,
XTICKLAYOUT/YTICKLAYOUT/ZTICKLAYOUT,
XTICKLEN/YTICKLEN/ZTICKLEN,
XTICKNAME/YTICKNAME/ZTICKNAME, XTICKS/YTICKS/ZTICKS,
XTICKUNITS/YTICKUNITS/ZTICKUNITS, XTICKV/YTICKV/ZTICKV,
XTICK_GET/YTICK_GET/ZTICK_GET, XTITLE/YTITLE/ZTITLE, ZAXIS,
ZVALUE

Exceptions

None.

Example

IONVariable value = getProperty(Property);

setNoErase()

The setNoErase() method of the IONSurface class overrides setNoErase() in the
IONGrDrawable class. The setNoErase() method of the IONJSurface class overrides
ION Java User’s Guide IONSurface / IONJSurface Class

256 Chapter 6: ION Java Class and Method Reference
setNoErase() in the IONJGrDrawable class. See “setNoErase()” on page 195 for the
syntax of this method.

setProperty()

The setProperty() method sets a property for the plot object.

Syntax

public final void setProperty(String sName, IONVariable vValue)

Arguments

sName

The name of the property to set.

vValue

The value to which to set the property.

Properties Supported

The properties supported by the IONSurface.[get,set]Property are the same as those
supported by the “getProperty()” on page 254. Refer to the IDL documentation on
keywords available for use with the SURFACE procedure for an explanation of each
property:

Exceptions

None.
IONSurface / IONJSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 257
setXValue()

The setXValue() method resets the X value of the surface.

Syntax

public void setXValue(int X[])

public void setXValue(float X[])

public void setXValue(double X[])

public void setXValue(String sName)

Arguments

X

The new X value of the surface.

sName

The name of the IDL variable that contains the new X value of the surface.

Exceptions

None.

setYValue()

The setYValue() method resets the Y value of the surface.

Syntax

public void setYValue(int Y[])

public void setYValue(float Y[])

public void setYValue(double Y[])

public void setYValue(String sName)

Arguments

Y

The new Y value of the surface.
ION Java User’s Guide IONSurface / IONJSurface Class

258 Chapter 6: ION Java Class and Method Reference
sName

The name of the IDL variable that contains the new Y value of the surface.

Exceptions

None.

setZValue()

The setZValue() method resets the Z value of the surface.

Syntax

public void setZValue(int Z[][])

public void setZValue(float Z[][])

public void setZValue(double Z[][])

public void setZValue(String sName)

Arguments

Z

The new Z value of the surface.

sName

The name of the IDL variable that contains the new Z value of the surface.

Exceptions

None.
IONSurface / IONJSurface Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 259
IONVariable Class

Objects of the IONVariable class provide a client-side representation of an IDL
variable. IONVariable objects are used to read and write data between the IDL server
and clients.

Note
IDL and Java both have a basic byte data type, however, IDL’s byte is unsigned and
Java’s is signed. Java does not support the concept of unsigned types. When a byte
in Java is cast to an integer, the sign is preserved via sign extension. This can cause
problems when transferring byte data between IDL and Java. For information on
how to properly convert an IDL byte to a Java byte, see “Converting Between IDL
and Java Bytes” on page 100.

Class Declaration

Constants

The following constants are used to identify data types:

public class IONVariable

extends Object

Type Description

TYPE_UNDEFINED Variable is of IDL type undefined

TYPE_BYTE Variable is of IDL type byte

TYPE_INT Variable is of IDL type int

TYPE_LONG Variable is of IDL type long

TYPE_FLOAT Variable is of IDL type float

TYPE_DOUBLE Variable is of IDL type double

TYPE_STRING Variable is of IDL type string

TYPE_COMPLEX Variable is of IDL type complex

TYPE_DCOMPLEX Variable is of IDL type double complex
ION Java User’s Guide IONVariable Class

260 Chapter 6: ION Java Class and Method Reference
Methods

• IONVariable() — Constructs an object of the IONVariable class.

• arrayDimensions() — Returns an int array that contains the array’s
dimensions.

• getByte() — Returns the byte value of the variable.

• getByteArray() — Returns the byte array of the variable.

• getComplexArray() — Returns the array of IONComplex values.

• getDComplexArray() — Returns the array of IONDComplex values.

• getDImaginary() — Returns the imaginary value of a double complex
variable.

• getDouble() — Returns the double value of the variable.

• getDimensionedByteArray() — Returns the byte array value of the variable
as an array with the same dimensions as the variable.

• getDimensionedDoubleArray() — Returns the double array value of the
variable as an array with the same dimensions as the variable.

• getDimensionedFloatArray() — Returns the float array value of the variable
as an array with the same dimensions as the variable.

• getDimensionedIntArray() — Returns the integer array value of the variable
as an array with the same dimensions as the variable.

• getDimensionedShortArray() — Returns the short array value of the variable
as an array with the same dimensions as the variable.

• getDouble() — Returns the double value of the variable.

• getDoubleArray() — Returns the double array value of the variable.

• getFloat() — Returns the float value of the variable.

• getFloatArray() — Returns the float array of the variable.

• getImaginary() — Returns the imaginary value of a complex variable.

• getInt() — Returns the int value of the variable.

• getIntArray() — Returns the int array of the variable.

• getShort() — Returns the short value of the variable.

• getShortArray() — Returns the short array value of the variable.
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 261
• getString() — Returns the string value of the variable.

• getStringArray() — Returns the string array value of the variable.

• isArray() — Returns true of the variable is an array.

• toString() — Returns a string that represents the variable value.

• type() — Returns the type of the variable.
ION Java User’s Guide IONVariable Class

262 Chapter 6: ION Java Class and Method Reference
IONVariable()

The IONVariable() method constructs an object of the specified IDL data type. The
variable can be either a scalar or an array.

Syntax

Scalars

public IONVariable()

public IONVariable(byte b)

public IONVariable(short s)

public IONVariable(int i)

public IONVariable(float f)

public IONVariable(double d)

public IONVariable(String s)

public IONVariable(String s, boolean b)

public IONVariable(IONDComplex cmplx)

Arrays

public IONVariable(byte b[], int dims[])

public IONVariable(short i[], int dims[])

public IONVariable(int i[], int dims[])

public IONVariable(float f[], int dims[])

public IONVariable(double d[], int dims[])

public IONVariable(String s[], int dims[])

public IONVariable(IONComplex cmplx[], int dims[])

public IONVariable(IONDComplex cmplx[], int dims[])

Arguments

Most arguments are straightforward. If no arguments are specified, the IONVariable
object corresponds to an IDL variable of type “Undefined”. Type “short” corresponds
to IDL type “integer”, and type “int” corresponds to IDL type “long integer”. The
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 263
size of arrays and the array dimension array are determined through the use of the
Java array length property.

Example

To create an IONVariable object of type float:

IONVariable oVariable = new IONVariable(1234.5678);

To create an IONVariable object of type float array of size (100,100,3):

float[] farr = new float[100*100*3];
int dims[] = new int[3];
dims[0] = 100;
dims[1] = 100;
dims[2] = 3;
oVariable = new IONVariable(farr, dims);

arrayDimensions()

The arrayDimensions() method returns an int array that contains the size of the
dimensions of the array variable. If the variable is not an array, an exception is
thrown.

Syntax

public final int[] arrayDimensions()

Return Value

The function returns an int array that contains the size of each dimension in the
corresponding element of the array. The number of dimensions available can be
determined through the length property of the returned array.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
int dims[] = arrayDimensions();
ION Java User’s Guide IONVariable Class

264 Chapter 6: ION Java Class and Method Reference
}catch(IONNotAnArrayException e){
System.err.println("Variable is not an array");

}

getByte()

The getByte() method returns the byte value of the variable. If the value is not of type
byte, the scalar value is converted to a byte.

Syntax

public final byte getByte()

Return Value

The method returns the byte value of the variable.

Arguments

None.

Exceptions

IONIsAnArrayException, NumberFormatException

Example

try {
byte b = myVariable.getByte();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}catch(NumberFormatException e){

System.err.println("String Cannot be converted");
}

getByteArray()

The getByteArray() method returns the byte array value of the variable. If the value is
not of type byte, a “java.lang.ClassCastException” exception will be thrown.

Syntax

public final byte[] getByteArray()
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 265
Return Value

The method returns the byte array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
byte b[] = myVariable.getByteArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

getComplexArray()

The getComplexArray() method returns the value of the complex array variable.

Syntax

public final IONComplex[] getComplexArray()

Return Value

The method returns the value of the complex array variable.

Arguments

None.

Exceptions

IONNotAnArrayException
ION Java User’s Guide IONVariable Class

266 Chapter 6: ION Java Class and Method Reference
Example

try {
IONComplex c[] = myVariable.getComplexArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

getDComplexArray()

The getDComplexArray() method returns the value of the double complex array
variable. If the value is not of type double complex, a
“java.lang.ClassCastException” exception will be thrown.

Syntax

public final IONDComplex[] getDComplexArray()

Return Value

The method returns the value of the double complex array variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
IONDComplex dc[] = myVariable.getDComplexArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 267
getDImaginary()

The getDImaginary() method returns the imaginary value of the double complex
variable. If the value is not of type double complex, zero is returned.

Syntax

public final double getDImaginary()

Return Value

The method returns the imaginary value of the double complex variable.

Arguments

None.

Exceptions

IONIsAnArrayException

Example

try {
double i = myVariable.getDImaginary();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}

getDimensionedByteArray()

Returns the byte array value of the variable. The result contains the same number of
dimensions as the variable.

Syntax

public final Object getDimensionedByteArray

(where Object can be a 1- to 8-dimensional array of Java primitive type 'byte')

Return

The method returns the multidimensional byte array value of the variable.
ION Java User’s Guide IONVariable Class

268 Chapter 6: ION Java Class and Method Reference
Arguments

None.

Exceptions

IONNotAnArrayException

Example

IONVariable myVariable = c_ionCon.getIDLVariable("my3dByteArr");
byte b3d[][][];
try {
b3d = (byte[][][])myVariable.getDimensionedByteArray();
} catch(IONNotAnArrayException e) {

System.err.println("Variable is not an array");
}

getDimensionedDoubleArray()

Returns the double array value of the variable. The result contains the same number
of dimensions as the variable.

Syntax

public final Object getDimensionedDoubleArray

(where Object can be a 1- to 8-dimensional array of Java primitive type 'double')

Return

The method returns the multidimensional double array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 269
Example

IONVariable myVariable = c_ionCon.getIDLVariable("my3dDoubleArr");
double d3d[][][];
try {
d3d = (double[][][])myVariable.getDimensionedDoubleArray();
} catch(IONNotAnArrayException e) {

System.err.println("Variable is not an array");
}

getDimensionedFloatArray()

Returns the float array value of the variable. The result contains the same number of
dimensions as the variable.

Syntax

public final Object getDimensionedFloatArray

(where Object can be a 1- to 8-dimensional array of Java primitive type 'float')

Return

The method returns the multidimensional float array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

IONVariable myVariable = c_ionCon.getIDLVariable("my3dFloatArr");
float f3d[][][];
try {
f3d = (float[][][])myVariable.getDimensionedFloatArray();
} catch(IONNotAnArrayException e) {

System.err.println("Variable is not an array");
}

ION Java User’s Guide IONVariable Class

270 Chapter 6: ION Java Class and Method Reference
getDimensionedIntArray()

Returns the integer array value of the variable. The result contains the same number
of dimensions as the variable.

Syntax

public final Object getDimensionedIntArray

(where Object can be a 1- to 8-dimensional array of Java primitive type 'int')

Return

The method returns the multidimensional int array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

IONVariable myVariable =
c_ionCon.getIDLVariable("my3dIdlLongArr");
int i3d[][][];
try {
i3d = (int[][][])myVariable.getDimensionedIntArray();
} catch(IONNotAnArrayException e) {
System.err.println("Variable is not an array");
}

getDimensionedShortArray()

Returns the short array value of the variable. The result contains the same number of
dimensions as the variable.

Syntax

public final Object getDimensionedShortArray

(where Object can be a 1- to 8-dimensional array of Java primitive type 'short')
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 271
Return

The method returns the multidimensional short array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

IONVariable myVariable = c_ionCon.getIDLVariable("my3dIdlIntArr");
short short3d[][][];
try {
short3d = (short[][][])myVariable.getDimensionedShortArray();
} catch(IONNotAnArrayException e) {

System.err.println("Variable is not an array");
}

getDouble()

The getDouble() method returns the double value of the variable. If the value is not of
type double, the scalar value is converted to a double.

Syntax

public final double getDouble()

Return Value

The method returns the double value of the variable.

Arguments

None.

Exceptions

IONIsAnArrayException, NumberFormatException
ION Java User’s Guide IONVariable Class

272 Chapter 6: ION Java Class and Method Reference
Example

try {
double d = myVariable.getDouble();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}catch(NumberFormatException e){

System.err.println("String Cannot be converted");
}

getDoubleArray()

The getDoubleArray() method returns the double array value of the variable. If the
value is not of type double, a “java.lang.ClassCastException” exception will be
thrown.

Syntax

public final double[] getDoubleArray()

Return Value

The method returns the double array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
double d[] = myVariable.getDoubleArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

getFloat()

The getFloat() method returns the float value of the variable. If the value is not of
type float, the scalar value is converted to a float.
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 273
Syntax

public final float getFloat()

Return Value

The method returns the float value of the variable.

Arguments

None.

Exceptions

IONIsAnArrayException, NumberFormatException

Example

try {
float f = myVariable.getFloat();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}catch(NumberFormatException e){

System.err.println("String Cannot be converted");
}

ION Java User’s Guide IONVariable Class

274 Chapter 6: ION Java Class and Method Reference
getFloatArray()

The getFloatArray() method returns the float array value of the variable. If the value
is not of type float, “java.lang.ClassCastException” exception will be thrown.

Syntax

public final float[] getFloatArray()

Return Value

The method returns the float array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
float f[] = myVariable.getFloatArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

getImaginary()

The getImaginary() method returns the imaginary value of the complex variable. If
the value is not of type complex, zero is returned.

Syntax

public final float getImaginary()

Return Value

The method returns the imaginary value of the complex variable.
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 275
Arguments

None.

Exceptions

IONIsAnArrayException

Example

try {
float i = myVariable.getImaginary();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}

getInt()

The getInt() method returns the int value of the variable. If the value is not of type int
(IDL type long), the scalar value is converted to an int.

Syntax

public final int getInt()

Return Value

The method returns the int value of the variable.

Arguments

None.

Exceptions

IONIsAnArrayException, NumberFormatException
ION Java User’s Guide IONVariable Class

276 Chapter 6: ION Java Class and Method Reference
Example

try {
int i = myVariable.getInt();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}catch(NumberFormatException e){

System.err.println("String Cannot be converted");
}

getIntArray()

The getIntArray() method returns the int array value of the variable. If the value is not
of type int, “java.lang.ClassCastException” exception will be thrown.

Syntax

public final int[] getIntArray()

Return Value

The method returns the int array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
int i[] = myVariable.getIntArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 277
getShort()

The getShort() method returns the short value of the variable. If the value is not of
type short (IDL type int), the scalar value is converted to a short.

Syntax

public final short getShort()

Return Value

The method returns the short value of the variable.

Arguments

None.

Exceptions

IONIsAnArrayException, NumberFormatException

Example

try {
short s = myVariable.getShort();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}catch(NumberFormatException e){

System.err.println("String Cannot be converted");
}

getShortArray()

The getShortArray() method returns the short array value of the variable. If the value
is not of type short, “java.lang.ClassCastException” exception will be thrown.

Syntax

public final short[] getShortArray()

Return Value

The method returns the short array value of the variable.
ION Java User’s Guide IONVariable Class

278 Chapter 6: ION Java Class and Method Reference
Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
short s[] = myVariable.getShortArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

getString()

The getString() method returns the string value of the variable. If the value is not of
type string, the scalar value is converted to a string.

Syntax

public final String getString()

Return Value

The method returns the string value of the variable.

Arguments

None.

Exceptions

IONIsAnArrayException

Example

try {
String st = myVariable.getString();
}catch(IONIsAnArrayException e){

System.err.println("Variable is an array");
}

IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 279
getStringArray()

The getStringArray() method returns the string array value of the variable. If the
value is not of type string, “java.lang.ClassCastException” exception will be thrown.

Syntax

public final String[] getStringArray()

Return Value

The method returns the string array value of the variable.

Arguments

None.

Exceptions

IONNotAnArrayException

Example

try {
String st[] = myVariable.getStringArray();
}catch(IONNotAnArrayException e){

System.err.println("Variable is not an array");
}

isArray()

The isArray() method determines if the value of the variable is an array.

Syntax

public final boolean isArray()

Return Value

This method returns true if the variable is an array and false if the variable is not.

Arguments

None.
ION Java User’s Guide IONVariable Class

280 Chapter 6: ION Java Class and Method Reference
Exceptions

None.

Example

boolean bIsArray = myVariable.isArray();

toString()

The toString() method returns a string representation of the variables value.

Syntax

public final String toString()

Return Value

A string that represents the value of the variable. The string is in a format that can be
understood by IDL.

Arguments

None.

Exceptions

None.

Example

String s = myVariable.toString();

type()

The type() method returns the type of the value the variable contains. This return
value is one of the constant type codes which are a part of this object.

Syntax

public final int type()
IONVariable Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 281
Return Value

This function returns the type code of the variable.

Arguments

None.

Exceptions

None.

Example

int typeCode = myVariable.type();
ION Java User’s Guide IONVariable Class

282 Chapter 6: ION Java Class and Method Reference
IONWindowingClient Class

The IONWindowingClient class provides mechanisms to handle the processing of the
windowing commands that are part of an IDL Direct Graphics driver. This includes
the creation, deletion, showing, hiding and iconization of windows on the client.

Class Declaration

Methods

• IONWindowingClient() — Constructs an object of the IONWindowingClient
class.

• connect() — Connects to the server.

• createWindow() — Creates a window on the client

• deleteWindow() — Deletes a given window or pixmap

• showWindow() — Shows/hides a window

IONWindowingClient()

The IONWindowingClient() method constructs an IONWindowingClient object. The
connect method (from IONGraphicsClient) must be called to establish a connection
between the client and the server.

Syntax

public IONWindowingClient(Component comp)

Arguments

comp

A Java AWT Component that is used to reference the display being used for the
graphics. This is needed for creating offscreen images.

public class IONWindowingClient

extends IONGraphicsClient
IONWindowingClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 283
Exceptions

None.

connect()

See “connect()” on page 125.

createWindow()

The createWindow() method creates a drawing area of the given size, places that area
in its own window frame, make the window the current destination for graphics
output and returns the IDL window index of the new window. If a title is not
specified, the default IDL windowing convention is used (IDL 0, IDL 1, ...).

Syntax

public int createWindow(int xsize, int ysize)

public int createWindow(int xsize, int ysize, String title)

public int createWindow(int index, int xsize, int ysize)

public int createWindow(int index, int xsize, int ysize, String title)

public int createWindow(int index, int xsize, int ysize, int xpos, int ypos, String title)

Return Value

This method returns the IDL window index of the newly created window.

Arguments

xsize

The width in pixels of the window to be created

ysize

The height in pixels of the window to be created

title

The title of the window to be created
ION Java User’s Guide IONWindowingClient Class

284 Chapter 6: ION Java Class and Method Reference
index

The desired IDL window index of the window

Exceptions

None

Example

IONWindowingClient ionWin = New IONWindowingClient();
int index = ionWin.createWindow(xsize, ysize, title);

For another detailed example, see the window.java example located in the
examples/src directory.

deleteWindow()

Use the deleteWindow() method to delete the window/pixmap that is referenced by
the given IDL Window index.

Syntax

public void deleteWindow(int index)

Arguments

index

The IDL Window index of the window/pixmap to destroy

Exceptions

None

showWindow()

Use the showWindow() method to raise or lower the Z order of the given window.

Syntax

public void showWindow(int index, boolean show)
IONWindowingClient Class ION Java User’s Guide

Chapter 6: ION Java Class and Method Reference 285
Arguments

index

The IDL Window index of the window to iconize

show

Flag used indicate if the window should be shown or hidden

Exceptions

None
ION Java User’s Guide IONWindowingClient Class

286 Chapter 6: ION Java Class and Method Reference
IONWindowingClient Class ION Java User’s Guide

Chapter 7:

Troubleshooting
Using ION applets over the World Wide Web requires interaction between your Web
server, the ION Server, and IDL. This section discusses some possible ION Server
and IDL problems you may encounter:

• Avoiding Conflicting ION 1.4 and ION 1.6 Installations

• Checking Web Server Communication

• Troubleshooting ION Service Problems

• Troubleshooting Applets that Fail to Display

• Troubleshooting “Not Found” Errors

• Troubleshooting Licensing Errors

• Setting the IDL Path

• Troubleshooting Security Errors

• Encountering Browser Timeouts with Java Errors
ION Java User’s Guide 287

288 Chapter 7: Troubleshooting
Avoiding Conflicting ION 1.4 and ION 1.6 Installations

Unexpected errors occur when attempting to use ION 1.4 classes with the ION 1.6
server or vice versa. To avoid conflicts, remove the ION 1.4 service, and all ION 1.4
class, .zip, and .jar files from your system before installing ION 1.6.

Removing the ION 1.4 Service

To remove the ION 1.4 Service, complete the following steps:

On Windows

1. Open the ION Properties utility, wionprop.exe, located in
RSI-DIR\ion14\ion_java\bin directory where RSI-DIR is the directory
where you have installed ION 1.4

2. Stop the ION Service by selecting the “Stop” button.

3. Remove the ION Service by selecting the “Remove” button.

After removing the ION 1.4 service, uninstall ION 1.4.

On UNIX

1. At the shell prompt, change to the ION 1.4 installation directory,
RSI-DIR/ion14/ion_java/bin where RSI-DIR is the directory where
you have installed ION 1.4.

2. Enter iondown to stop the ION daemon.

After removing the ION 1.4 service, uninstall ION 1.4 by deleting the directory tree.

Check the CLASSPATH Variable

If you have configured a system variable for CLASSPATH, make sure it is not
referencing ION 1.4. See “Setting the Class Path” on page 96 for more information.

Check the ION Version

From within an application, you can see which version of ION your application is
using by adding a call to the getClientVersion() method of the “IONCallableClient
Class” on page 122. Make sure the resulting string value indicating the current
version of ION is ION 1.6.

Checking Web Server Communication

Make sure you are able to communicate with the Web Server. For example, using the
Apache Web server, you can enter a URL such as http://localhost or
ION Java User’s Guide

Chapter 7: Troubleshooting 289
http://hostname, where hostname is the hostname or Windows machine name
of your computer. If your Web server is properly configured, you should receive a
page stating that the Apache Web server has been successfully installed on your site.
Consult your Web server documentation to find out how to test your Web server.

Troubleshooting ION Service Problems

Make Sure the ION Service is Started

On Windows, select Start → Programs → Research Systems ION 1.6 →
ION Java Status. In the “ION Status” dialog, enter the hostname of your computer
and click Query. If you receive a message, “Unable to connect to the ION Java
Daemon,” you should make sure the service is started and that the port number is
correct. Use the “Control” tab of the ION Java Properties utility to start the ION
service and to check the port number. See “The ION Java Properties Dialog” on
page 11.

On UNIX, change to the RSI-DIR/ion_1.6/ion_java/bin directory and enter
ionstat to query the ION Service. If you receive the message, “Error: Unable to
locate ION Java Server,” see “Starting the ION Daemon on UNIX” on page 22 for
instructions on how to start the ION Service.

Check File Permissions

On Windows NT systems, only users with the administrator privileges are allowed to
start and stop the ION service using the Services Control Panel. If you have
Administrator privileges but continue to experience problems when trying to start or
stop the ION service using the utility described in the section, “The ION Java
Properties Dialog” on page 11, you may need to use the Windows task manager to
end the process or reboot the server to resolve the problem.

Troubleshoot Port Number Problems

If the ION Service is not running on the default port number (7085), then the applet
code must specify the port number. See “Connecting to the ION Server” on page 72
information about including a port number connection parameter within an applet.

Enable SOCKS Proxy to Resolve Firewall Connection Problems

If the client machine is located behind a firewall and the socket connection between
the ION server and the client machine cannot be established, the user on the client
machine should verify that the SOCKS proxy is enabled in their browser.

Verify SOCKS Proxy on Netscape Navigator

1. From the browser, select Edit → Preferences.
ION Java User’s Guide

290 Chapter 7: Troubleshooting
2. Expand the Advanced heading and select Proxies.

3. In the Proxies section of the Preferences dialog, select the “Manual proxy
configuration” option and click View to view the SOCKS proxy settings.

Verify SOCKS Proxy on Internet Explorer

1. From the browser, select Tools → Internet Options.

2. Select the “Connections” tab and click the LAN Settings button.

3. In the “Proxy server” field, check the “Use a proxy server” box if necessary
and click the Advanced button to view the SOCKS proxy settings.

On each browser, you will see a list of the proxies supported by the browser as well
as other information your site uses to implement the proxy. If the SOCKS proxy field
is blank, check with your System Administrator to see if your site supports the
SOCKS proxy. If the SOCKS proxy is available, input the correct information.

Troubleshooting Applets that Fail to Display

When an applet fails to display, first make sure the ION Service is started. See
“Checking Web Server Communication” on page 288. If you are on a slow
connection (modem), you may need to wait for all of ION Java’s class files to be
downloaded to your browser. These Java class files are required by ION Java for
proper operation. If neither of these issues seem to be the problem, check the
following sections for additional possibilities.

Enable Java in Your Browser

Most web browsers include a setting that enables the use of Java applets in HTML
pages. Make sure your browser is configured to allow Java to load by completing the
following steps for your browser.

Enable Java in Netscape Navigator

1. In the browser, select Edit → Preferences.

2. Click on Advanced and make sure the “Enable Java” check box is selected.

Enable Java in Internet Explorer

1. In the browser, select Tools → Internet Options.

2. Select the “Advanced” tab.

3. At the bottom of the scroll window, make sure “JIT compiler for virtual
machine enabled” is selected.
ION Java User’s Guide

Chapter 7: Troubleshooting 291
Restart the Browser

If an ION applet fails to load as expected, even though you are using the correct
CODEBASE, you might need to shut down and restart the browser. It’s a good idea to
shut down and restart the browser any time you make changes to your HTML or class
files.

Check the Java Console Log

If your applet fails to function properly, always check the Java console. To open the
java console, complete the following steps for your browser.

Open the Netscape Navigator Java Console

1. Open the Netscape browser.

2. Select Communicator → Tools → Java Console.

Open the Internet Explorer Java Console

1. Open the IE browser.

2. Select View → Java Console. If Java Console is not an active option,
complete the following steps:

A. Select Tools → Internet Options and click the Advanced tab.

B. Select the “Java Console Enabled” and “Java Logging Enabled” options
located at the bottom of the scroll window. Apply the changes.

C. Restart your browser.

D. Open the Java Console by selecting View → Java Console.

Note
If you are running the client and the server on the same machine, setting the system
CLASSPATH environment variable can result in errors similar to the following,
appearing in your browser’s Java console:

Netscape Java Console — #Applet exception:
error.java.lang.ClassFormatError:class already loaded

IE Java Console — Error getting package information: com/rsi/ion
To avoid such errors, specify the class path when compiling as described in the
section, “Compiling .java Files” on page 96.
ION Java User’s Guide

292 Chapter 7: Troubleshooting
Check the Debug Window

It is also helpful to set the ION applet Debug Mode, which allows you to check for
IDL command log output or java program output for errors. See “Debug Mode” on
page 99 for more information.

Note
Applets may also fail display because of security errors. See “Troubleshooting
Security Errors” on page 294 for more information.

Troubleshooting “Not Found” Errors

Check the Location of Class Files

If you encounter an error that looks like:

Applet xxx can’t start: class xxx not found

in the message area of your browser or in the Java Console, check to make sure that
the ION package (the directory hierarchy com/rsi/ion/*) or the appropriate ION
archive file is located either in the same directory as the HTML page that contains the
applet or in the directory specified by the CODEBASE attribute of the APPLET tag.
See “Locating the Class Files for use by ION Applets” on page 102 and “Supporting
Java Archive Files” on page 103 for details.

Note
Class names are case sensitive. Within your Java code, calling
customaction.class when the file has been saved as CustomAction.class
and can produce a “class not found” error.

Check File Permissions

The ION Daemon runs with the user and group ID of the user who started it. This
means that the daemon will have the same file access permissions as that user. While
it is not necessary to start the ION Daemon as a particularly privileged user, make
sure that the access permissions for the ION class files and any class files you create
are such that the ION Daemon has read permission.

If your applet does not run and the Java Console shows something like the following:

Applet exception: class myApplet not found

where you know that the myApplet.class file exists and is located in the designated
place, you may have a file permissions problem.
ION Java User’s Guide

Chapter 7: Troubleshooting 293
Troubleshooting Licensing Errors

If you get a license manager error on Windows stating that the license file cannot be
found, your ION Java installation may not have been properly licensed. Review the
licensing instructions in the Installing and Licensing IDL manual and make sure you
have properly licensed ION.

Note
Since Web Servers do not read any system environment variables, you cannot use
the LM_LICENSE_FILE environment variable to point to where you have located
your license file. When licensing ION Java, you must place your license file in the
default location RSI-DIR\license\license.dat where RSI-DIR is the name
of the main installation directory you selected to install ION Java. On UNIX, if you
have a network license that you wish your ION installation to use, you can copy the
network license file to the default location RSI-DIR\license\license.dat on
the machine on which you are running ION.

Note
Licensing errors appear on the server machine, not the client machine.

Setting the IDL Path

The IDL Search Path is used to specify the search path used by IDL for .pro and
.sav files. If you call user-written IDL routines from an applet, make sure that the
.pro files are located in IDL’s path. You can set the IDL Path using one of the
following methods:

• Place the directory that contains your .pro files in the path specified by the
IDL_PATH environment variable by adding your directory in the “Path” tab of
the Preferences dialog, accessed by selecting File → Preferences in the IDL
Development Environment.

• Explicitly alter the value of the IDL system variable !PATH within your applet
code.

• Set the IDL Path on Windows using the “Locations” tab of ION Java
Properties dialog. See “The ION Java Properties Dialog” on page 11.

To specify multiple IDL Path search directories, separate each directory with a
semicolon (Windows) or a colon (UNIX). Place the “+” symbol at the beginning of a
directory to indicate that all subdirectories of a specified directory should be
ION Java User’s Guide

294 Chapter 7: Troubleshooting
searched. For example the following Windows IDL Search Path specifies that the
directory C:\Program Files\Apache Group\apache2\htdocs\IONJava and
all its subdirectories be searched as well as the C:\java_source directory:

+C:\Program Files\Apache Group\apache2\htdocs\
IONJava;C:\java_source

On UNIX, the following IDL Search Path specifies that the directory
/usr/local/apache2/htdocs/ionjava and all of its subdirectories be
searched as well as the /home/java directory:

+/usr/local/apache2/htdocs/ionjava:/home/java

If ION attempts to compile and run a .pro file that is not in the path, no output will
be generated but no error will be displayed. The best way to catch errors like this is to
enable the ION applet Debug Mode and check the IDL command log output. See
“Debug Mode” on page 99 for more information.

Troubleshooting Security Errors

Use http:// Instead of file:// with Internet Explorer

Security errors result when attempting to open HTML files containing applets using
the IE browser’s File → Open command or when double-clicking an .html file to
open it in the browser. When using Internet Explorer, always use an URL to specify
the file location, for example,
http://www.mydomain.com/htmlfiles/index.html.

Check Security Command Settings

Applets that violate the screening process specified by security command settings
will result in errors. See “Command Security” on page 34 to see if your applet is
failing the ION Service’s security criteria.

Encountering Browser Timeouts with Java Errors

If you do encounter an error when running a Java applet, some browsers’ Java virtual
machines will “hang,” requiring you to shut down and restart the browser. It is
generally a good idea to restart your browser after a Java error.

When the error is in an ION applet, there is a chance that the connection to the ION
Server is still active when you close your browser. In this case, your browser may not
start again immediately; it will wait for the ION socket connection to time out before
shutting down and allowing you to start the browser again.
ION Java User’s Guide

Chapter 7: Troubleshooting 295
On Unix systems, you can use the kill command to prematurely kill the browser
process and close the socket connection. On Windows NT systems, use the
“Processes” tab of the Task Manager dialog to end a browser process. If you do not
manually kill the browser process, the socket connection will automatically time out
in 60 seconds.

ION Server Timeout

The ION Server may time out if you leave an applet unattended. You can change the
amount of time the ION Server will wait before timing out. For more information, see
Chapter 1, “Configuring ION Java”.

JDK 1.2 Required for Clients

Clients may encounter problems if they are using a pre-JDK 1.2 virtual machine.
JDK 1.2, 1.3, or 1.4 is required for connections to ION Java 1.6. User’s can check
their browser configurations for information on which version they are using.
ION Java User’s Guide

296 Chapter 7: Troubleshooting
ION Java User’s Guide

Index

Symbols
$ (line continuation character), 44

A
addDrawable() method, 174
addGraphic() method, 189
addIONCommandDoneListener() method, 124
addIONDisconnectListener() method, 124
addIONDrawable() method, 164
addIONMouseListener() method, 135
addIONOutputListener() method, 125
ALIGN attribute, 68
ALT attribute, 68
APPLET tag

ALIGN attribute, 68
ALT attribute, 68

ARCHIVE attribute, 69
CODE attribute, 69
CODEBASE attribute, 69
HEIGHT attribute, 70
HSPACE attribute, 70
NAME attribute, 70
VSPACE attribute, 70
WIDTH attribute, 70

applets
attributes, 68
compiling, 96
controlling with scripts, 109
creating, 102
debugging, 74
including in HTML pages, 102
ION pre-built, 43
IONContourApplet, 61, 78
IONGraphicApplet, 61, 76
ION Java User’s Guide 297

298
IONPlotApplet, 62, 84
IONSurfaceApplet, 62, 86
sharing connections, 74

applications
performance, 46

ARCHIVE attribute, 69
arrayDimensions() method, 263
attributes

ALIGN, 68
ALT, 68
ARCHIVE, 69
CODE, 69
CODEBASE, 69
HEIGHT, 70
HSPACE, 70
NAME, 70
PARAM tags, 72
VSPACE, 70
WIDTH, 70

AWT, 64
AYSNC_COMMANDS parameter, 76

B
bandwidth, 46
byte data type

converting between IDL and Java, 100

C
character size, setting, 93
class files

class path, 96
location, 53

class path, 96
client (applet) verification, 35
CODE attribute, 69
CODEBASE attribute, 69
color (ION device), 90
command line parameters (ION daemon), 22

command security, 34
compiling applets, 96
configuring ION daemon

Windows, 11
connect() method

IONCallableClient class, 125
IONGraphicsClient class, 165
IONGrConnection class, 175
IONWindowingClient class, 283

connecting to the ION server, 72
connections

limit, 35
maximum number, 24, 33
sharing, 74

contour plots, 61, 78
contour_property parameter, 79
COPY keyword (ION device), 90
copyArea() method, 167
createImage() method, 160, 243
createWindow() method, 283
creating ION applets, 102
current font, 92

D
daemon, 41
debug mode, 99
DEBUG_MODE parameter, 74
debugging, 74
debugging applications, 99
debugMode() method, 99

IONGrConnection class, 175
IONGrDrawable class, 190

DECOMPOSED keyword (ION device), 90
DECOMPOSED_COLOR parameter, 76
deleteWindow() method, 284
disconnect() method

for scripts, 111
IONCallableClient class, 127
IONGrConnection class, 176

doubleValue() method, 142, 154
Index ION Java User’s Guide

299
draw() method
IONContour class, 148
IONGrContour class, 182
IONGrDrawable class, 191
IONGrGraphic class, 198
IONGrMap class, 204
IONGrMapContinents class, 210
IONGrMapGrid class, 212
IONGrMapImage class, 216
IONGrPlot class, 221
IONGrSurface class, 227
IONMap class, 234
IONPlot class, 248
IONSurface class, 254

drawing, 63

E
error handling, 98
examples

running applets, 67
simple applet, 105
using JavaScript, 111
using VBScript, 113

exceptions, handling, 98
exclude commands, 23
exclude file, 22
executeIDLCommand() method

for scripts, 111
IONCallableClient class, 127
IONGrConnection class, 176
IONGrDrawable class, 191

execution of IDL commands, 122

F
filtering, 34
floatValue() method

IONComplex class, 142
IONDComplex class, 154

FONT keyword (ION device), 91
fonts, available, 92
fonts, specifying, 91

G
GET_CURRENT_FONT keyword (ION de-
vice), 92
GET_FONTNAMES keyword (ION device),
92
GET_GRAPHICS_FUNCTION keyword
(ION device), 92
GET_SCREEN_SIZE keyword (ION device),
92
getByte() method, 264
getByteArray() method, 264
getClientVersion() method, 128
getComplexArray() method, 265
getConnection() method, 192
getConnectionType() method, 128
getCurrentIndex() method, 167
getDComplexArray() method, 266
getDImaginary() method

IONComplex class, 143
IONDComplex class, 155
IONVariable class, 267

getDouble() method, 271
getDoubleArray() method, 272
getDownButtons() method, 136
getFloat() method, 272
getFloatArray() method, 274
getGraphics() method, 137, 161, 244
getIDLVariable() method, 129
getImage() method, 137, 161, 244
getImaginary() method

IONComplex class, 143
IONDComplex class, 155
IONVariable class, 274

getInt() method, 275
getIntArray() method, 276
getIONDrawableIndices() method, 168
ION Java User’s Guide Index

300
getMousePos() method, 138
getNumIndices() method, 168
getProperty() method, 216

IONContour class, 149
IONGrContour class, 182
IONGrGraphic class, 198
IONGrPlot class, 222
IONGrSurface class, 228
IONMap class, 234
IONPlot class, 248
IONSurface class, 254

getPropertyNames() method, 199
getPropertyString() method, 199
getShort() method, 277
getShortArray() method, 277
getString() method, 278
getStringArray() method, 279
graphics devices, ION, 90
graphics java classes, 43

H
HEIGHT attribute, 70
HSPACE attribute, 70
HTTP

ION Tunnel Broker, 31, 41

I
IDL

command execution, 122
command log output, 99
search path, 15
Widgets, 44

IDL_COMMAND parameter, 76
images

size of, 46
importing the ION package, 102
include commands, 23
include file, 23

including applets in HTML pages, 102
intValue() method

IONComplex class, 144
IONDComplex class, 156

ION
class files, 53
connecting to the server, 72
controlling applets with scripts, 109
error handling, 98
graphics device, 90

keywords accepted, 90
graphics objects

drawing, 63
getting properties, 63
setting properties, 63
setting values, 63

IDL limitations, 44
low-level classes, 57
pre-built applets, 61, 67
server limitations, 44
using graphics classes, 63

ION daemon, 41
checking status (UNIX), 27
checking status (Windows), 19
client verification, 35
command line parameters, 22
configuring on UNIX, 22
configuring on Windows, 11
overview, 10
port number, 13, 24
security, 35
security tokens, 25
shutting down, 27
starting on UNIX, 22
starting on Windows, 12
starting with Services Manager, 21

ION device
COPY keyword, 90
DECOMPOSED keyword, 90
FONT keyword, 91
GET_CURRENT_FONT keyword, 92
Index ION Java User’s Guide

301
GET_FONTNAMES keyword, 92
GET_GRAPHICS_FUNCTION keyword,
92
GET_SCREEN_SIZE keyword, 92
keywords accepted, 90
SET_CHARACTER_SIZE keyword, 92
SET_GRAPHICS_FUNCTION keyword, 93

ION Graphics Java Classes, 43
ION HTTP Tunnel Broker, 31, 41
ION Java Properties dialog, 11
ION Low-Level Java Classes, 43
ION methods available, 111
ION package

importing, 102
ION server, 40

connection limit, 35
security, 34
security files, 34
security system, 41

ION Service See also ION daemon.
ION Tunnel Broker

port number, 32
ION_CONNECTION_NAME parameter, 74
ion_httpd command, 32
IONCallableClient class, 57, 122, 124

addIONCommandDoneListener() method,
124
addIONDisconnectListener() method, 124
addIONOutputListener() method, 125
connect() method, 125
disconnect() method, 127
executeIDLCommand() method, 127
getCConnectionType() method, 128
getClientVersion() method, 128
getIDLVariable() method, 129
IONCallableClient() method, 123
removeIONCommandDoneListener() meth-
od, 130
removeIONDisconnectListener() method,
130
removeIONOutputListener() method, 131

sendIDLCommand() method, 131
setConnectionMethod() method, 132
setConnectionTimeout() method, 132
setIDLVariable() method, 133

IONCallableClient() method, 123
IONCanvas class, 58, 134

addIONMouseListener() method, 135
getDownButtons() method, 136
getGraphics() method, 137
getImage() method, 137
getMousePos() method, 138
IONCanvas() method, 135
removeIONMouseListener() method, 138

IONCanvas() method, 135
IONCommandComplete() method, 139
IONCommandDoneListener interface, 58, 139
IONCommandDoneListener interface class

IONCommandComplete() method, 139
IONComplex class, 58, 141

doubleValue() method, 142
floatValue() method, 142
getDImaginary() method, 143
getImaginary() method, 143
intValue() method, 144
IONComplex() method, 141
longValue() method, 144
toString() method, 145

IONComplex() method, 141
IONContour class, 59, 146

draw() method, 148
getProperty() method, 149
IONContour() method, 146
setNoErase() method, 150
setProperty() method, 150
setXValue() method, 150
setYValue() method, 151
setZValue() method, 152

IONContour() method, 146
IONContourApplet, 61, 78
IONdaemon

command line parameters, 20
ION Java User’s Guide Index

302
IONDComplex class, 58, 153
doubleValue() method, 154
floatValue() method, 154
getDImaginary() method, 155
getImaginary() method, 155
intValue() method, 156
IONDComplex() method, 153
longValue() method, 156
toString() method, 157

IONDComplex() method, 153
IONDisconnection() method, 158
IONDisconnectListener interface class, 158

IONDisconnection() method, 158
iondown utility, 27
IONDrawable class, 57
IONDrawable interface, 160

createImage() method, 160
getGraphics() method, 161
getImage() method, 161

IONGR2Drawable interface, 58
IONGraphicApplet, 61, 76
IONGraphicsClient

readImage() method, 169
IONGraphicsClient class, 57, 163

addIONDrawable() method, 164
connect() method, 165
copyArea() method, 167
getCurrentIndex() method, 167
getIONDrawableIndices() method, 168
getNumIndices() method, 168
IONGraphicsClient() method, 164
removeIONDrawable() method, 170
setDecomposed() method, 170
setIONDrawable() method, 171

IONGraphicsClient() method, 164
IONGrConnection class, 59, 172, 173

addDrawable() method, 174
debugMode() method, 175
executeIDLCommand() method, 176
IONGrConnection() method, 174
removeDrawable() method, 177

sendIDLCommand() method, 178
setDrawable() method, 178
setYValue() method, 186

IONGrConnection() method, 174
IONGrContour class, 60, 180

draw() method, 182
getProperty() method, 182
IONGrContour() method, 180
setNoErase() method, 184
setProperty() method, 183
setXValue() method, 184
setZValue() method, 186

IONGrContour() method, 180
IONGrDrawable class, 59, 188

addGraphic() method, 189
debugMode() method, 190
draw() method, 191
executeIDLCommand() method, 191
getConnection() method, 192
IONGrDrawable() method, 189
isConnected() method, 192
removeGraphic() method, 193
resetMulti() method, 193
sendIDLCommand() method, 194
setMulti() method, 195
setNoErase() method, 195

IONGrDrawable() method, 189
IONGrGraphic class, 60, 197

getProperty() method, 198
getPropertyNames() method, 199
getPropertyString() method, 199
IONGrGraphic() method, 197, 198
registerProperty() method, 200
setNoErase() method, 201
setProperty() method, 201

IONGrGraphic() method, 197
IONGrMap class, 60

draw() method, 204
getProperty() method, 205
IONGrMap(), 203
setProperty() method, 207
Index ION Java User’s Guide

303
IONGrMapContinents class, 60
draw() method, 210
getProperty() method, 210
IONGrMapContinents() method, 209
setProperty() method, 211

IONGrMapContinents() method, 209
IONGrMapGrid class, 60

draw() method, 212
getProperty() method, 213
IONGrMapGrid() method, 212
setProperty() method, 214

IONGrMapGrid() method, 212
IONGrMapImage class, 61, 216, 218

draw() method, 216
getProperty() method, 216
IONGrMapImage class, 215
setImage() method, 217
setProperty() method, 218
setStart() method, 218

IONGrMapImage() method, 215
IONGrPlot class, 61, 220

draw() method, 221
getProperty() method, 222
IONGrPlot() method, 220
setNoErase() method, 223
setProperty() method, 223
setXValue() method, 224
setYValue() method, 224

IONGrPlot() method, 220
IONGrSurface class, 61, 226

draw() method, 227
getProperty() method, 228
IONGrSurface() method, 226
setNoErase() method, 229
setProperty() method, 229
setXValue() method, 230
setYValue() method, 230
setZValue() method, 231

IONGrSurface() method, 226
IONJContour class, 146, 252

IONJContour() method, 146

IONJContour() method, 146
IONJMap class, 232
IONJPlot class, 246
IONMap class, 59

draw() method, 234
getProperty() method, 234
setProperty() method, 236

IONMouseListener interface class, 58, 238
mouseMoved() method, 238
mousePressed() method, 239
mouseReleased() method, 240

IONOffScreen class, 58, 242
createImage() method, 243
getGraphics() method, 244
getImage() method, 244
IONOffScreen() method, 242

IONOffScreen() method, 242
IONOutputListener interface, 58, 245
IONOutputListener interface class

IONOutputText() method, 245
IONOutputText() method, 245
IONPlot class, 59, 246

draw() method, 248
getProperty() method, 248
IONPlot() method, 246
setProperty() method, 249
setXValue() method, 250
setYValue() method, 250

IONPlot() method, 246
IONPlotApplet, 62, 84
ionstat utility, 27
IONSurface class, 60, 252

draw() method, 254
getProperty() method, 254
IONSurface() method, 253
setNoErase() method, 255
setProperty() method, 256
setXValue() method, 257
setYValue() method, 257
setZValue() method, 258

IONSurface() method, 253
ION Java User’s Guide Index

304
IONSurfaceApplet, 62, 86
IONVariable class, 58, 259

arrayDimensions() method, 263
getByte() method, 264
getByteArray() method, 264
getComplexArray() method, 265
getDComplexArray() method, 266
getDImaginary() method, 267
getDouble() method, 271
getDoubleArray() method, 272
getFloat() method, 272
getFloatArray() method, 274
getImaginary() method, 274
getInt() method, 275
getIntArray() method
, 276
getShort() method, 277
getShortArray() method, 277
getString() method, 278
getStringArray() method, 279
IONVariable() method, 262
isArray() method, 279
toString() method, 280
type() method, 280

IONVariable() method, 262
IONWindowingClient class, 57, 282

createWindow() method, 283
deleteWindow() method, 284
IONWindowingClient() method, 282
showWindow() method, 284

IONWindowingClient() method, 282
isArray() method, 279
isConnected() method, 192

J
jar files, 53, 103
Java applets

pre-built, 61, 67
Java archive files, 103

Java classes
ION low-level, 57

java console, 291
JavaScript, 109
JavaScript and VBScript

differences between, 115

L
limitations

IDL, 44
server, 44

line continuation character, 44
LINK_URL parameter, 75
LiveConnect (Netscape browers), 110
log file, 24, 24, 33
longValue() method

IONComplex class, 144
IONDComplex class, 156

low-level Java classes, 43

M
maximum number of connections, 24, 33, 35
mouse operations, 122
mouseMoved() method, 238
mousePressed() method, 239
mouseReleased() method, 240

N
NAME attribute, 70

O
object graphics, 94
object references, 95
output log file, 24, 24, 33
Index ION Java User’s Guide

305
P
packages

archive files, 103
PARAM Tags, 72
parameters

ASYNC_COMMANDS, 76
contour_property, 79
DEBUG_MODE, 74
DECOMPOSED_COLOR, 76
IDL_COMMAND, 76
ION_CONNECTION_NAME, 74
LINK_URL, 75
plot_property, 84
PORT_NUMBER, 72
SERVER_DISCONNECT, 72
SERVER_NAME, 72
surface_property, 87
X_VALUES, 78, 84, 86
Y_VALUES, 78, 84, 86
Z_VALUES, 78, 86

path, IDL search, 15
performance, 46
pixel copy operation (ION device), 90
plot_property parameter, 84
plotting, 62, 84
port number, 13, 24, 32
PORT_NUMBER parameter, 72
Pre-Built ION Client Applets, 43

R
readImage() method, 169
registerProperty() method, 200
removeDrawable() method, 177
removeGraphic() method, 193
removeIONCommandDoneListener() method,
130
removeIONDisconnectListener() method, 130
removeIONDrawable() method, 170
removeIONMouseListener() method, 138

removeIONOutputListener() method, 131
resetMulti() method, 193

S
screen size, retrieving, 92
scripting languages, 109, 111

differences, 115
search path, IDL, 15
security, 34

exclude commands, 23
exclude file, 22
include commands, 23
include file, 23
ION server, 41
lists, 25

sendIDLCommand() method
IONCallableClient class, 131
IONGrConnection class, 178
IONGrDrawable class, 194

server, 40
SERVER_DISCONNECT parameter, 72
SERVER_NAME parameter, 72
Services Manager (Windows)

ION daemon
services manager, 21

SET_CHARACTER_SIZE keyword (ION de-
vice), 92
SET_GRAPHICS_FUNCTION keyword (ION
device), 93
SET_PLOT routine, 90
setConnectionMethod() method, 132
setConnectionTimeout() method, 132
setDecomposed() method, 170
setDrawable() method, 178
setIDLVariable() method, 133
setImage() method, 217
setIONDrawable() method, 171
setMulti() method, 195
setNoErase() method

IONContour class, 150
ION Java User’s Guide Index

306
IONGrContour class, 184
IONGrDrawable class, 195
IONGrGraphic class, 201
IONGrPlot class, 223
IONGrSurface class, 229
IONSurface class, 255

setProperty() method, 218
IONContour class, 150
IONGrContour class, 183
IONGrGraphic class, 201
IONGrPlot class, 223
IONGrSurface class, 229
IONMap class, 236
IONPlot class, 249
IONSurface class, 256

setStart() method, 218
setXValue() method

IONContour class, 150
IONGrContour class, 184
IONGrPlot class, 224
IONGrSurface class, 230
IONPlot class, 250
IONSurface class, 257

setYValue() method
IONContour class, 151
IONGrConnection class, 186
IONGrPlot class, 224
IONGrSurface class, 230
IONPlot class, 250
IONSurface class, 257

setZValue() method
IONContour class, 152
IONGrContour class, 186
IONGrSurface class, 231
IONSurface class, 258

showWindow() method, 284
shutting down the ION daemon, 27
simple applet example, 105
status

utility, 19
status, checking on UNIX, 27

status, checking on Windows, 19
surface plots, 62, 86
surface_property parameter, 87
Swing, 64

T
tips and tricks (building applets), 115
toString() method, 157

IONComplex class, 145
IONVariable class, 280

true-color displays, 90
Tunnel Broker, 41

configuring, 31
configuring on UNIX, 24
configuring on Windows, 18
connection types, 31
ion_httpd command, 32
starting, 32

type() method, 280

U
URL (CODEBASE attribute), 70
URL, linking to, 75

V
VBScript, 109
VSPACE attribute, 70

W
WIDTH attribute, 70

X
X_VALUES parameter, 78, 84, 86
X-Y plots, 62, 84
Index ION Java User’s Guide

307
Y
Y_VALUES parameter, 78, 84, 86

Z
Z_VALUES parameter, 78, 86
zip file (of Java class files), 53
ION Java User’s Guide Index

308
Index ION Java User’s Guide

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	ION Java: Contents
	Configuring ION Java
	Starting and Configuring the ION Daemon
	Configuring ION Java for Windows
	The ION Java Properties Dialog
	The Control Tab
	The Locations Tab
	The Security Tab
	The Commands Tab
	The Broker Tab

	Checking Status with the ION Java Status Utility
	Windows Command Line Installation of the ION Daemon
	-install
	-remove
	-start
	-iondir

	Using Windows Services Manager to Start the ION Daemon

	Configuring ION Java for UNIX
	Starting the ION Daemon on UNIX
	-exfile
	-infile
	-excomm
	-incomm
	-http
	-httplog
	-httpport
	-httptimeout
	-logfile
	-maxconn
	-port
	-rutil
	-security
	-timeout

	Starting the ION Daemon at Boot Time
	Checking the Status of the ION Daemon
	-host
	-port

	Shutting Down the ION Daemon
	-force
	-host
	-port

	Manually Configuring Your Web Server
	Configuring The ION HTTP Tunnel Broker
	Using the Tunnel Broker
	Starting the ION Tunnel Broker Daemon
	-ionhost
	-ionport
	-port
	-logfile
	-maxpeer
	-timeout

	Command Security
	Security Command Files
	Client Verification
	Connection Limit

	Overview
	What is ION Java?
	Recommended Skills
	Familiarity with Web Server Administration
	JAVA Programming Knowledge
	Understanding of IDL

	ION Java Architecture
	ION Server
	Security Checks
	Command Execution

	ION Daemon
	ION HTTP Tunnel Broker
	The Tunnel Model

	Pre-Built ION Client Applets
	ION Component Classes
	ION Low-Level Classes

	ION Java Limitations
	Server Limitations
	IDL Limitations

	ION Java Performance Considerations
	Tips for Increasing Execution Speed in ION Java
	Package Multiple IDL Commands into a Single .pro File
	Convert TrueColor Images
	Send Complex Plots as a Single Image

	Bandwidth Issues
	Avoid Using Device Fonts

	Running the ION Java Examples
	Where to Place HTML and Class Files
	Testing ION Applications Locally
	Publishing ION Applications on Your Web Server
	Where to Locate the ION Class Files
	What Are the Required Class Files?

	Overview of the ION�Java Classes
	The ION Java Class Hierarchy
	ION Low-Level Classes
	IONCallableClient
	IONGraphicsClient
	IONWindowingClient
	IONDrawable
	IONGR2Drawable
	IONCanvas / IONJCanvas
	IONOffScreen
	IONCommandDoneListener
	IONMouseListener (deprecated)
	IONOutputListener
	IONVariable
	IONComplex
	IONDComplex

	ION Component Classes
	IONGrConnection
	IONGrDrawable / IONJGrDrawable
	IONContour / IONJContour
	IONMap / IONJMap
	IONPlot / IONJPlot
	IONSurface / IONJSurface
	IONGrGraphic
	IONGrContour
	IONGrMap
	IONGrMapContinents
	IONGrMapGrid
	IONGrMapImage
	IONGrPlot
	IONGrSurface

	ION Pre-Built Applets
	IONGraphicApplet
	IONContourApplet
	IONMapApplet
	IONPlotApplet
	IONSurfaceApplet

	Using the Component Classes
	Setting Values
	Getting and Setting Properties
	Drawing

	AWT vs. Swing

	Using ION’s Pre-Built Applets
	The <APPLET> Tag
	Attributes
	ALIGN
	ALT
	ARCHIVE
	CODE
	CODEBASE
	HEIGHT
	HSPACE
	NAME
	WIDTH
	VSPACE
	Example

	Supporting Java-Incapable Browsers

	Parameters Specified via <PARAM> Tags
	Connecting to the ION Server
	SERVER_NAME
	PORT_NUMBER
	SERVER_DISCONNECT
	CONNECTION_TYPE
	CONNECTION_TIMEOUT
	HTTP_HOSTNAME
	HTTP_PORT
	Example
	Using the Same Connection for Multiple Applets
	ION_CONNECTION_NAME
	Example

	Behavior Parameters
	DEBUG_MODE
	LINK_URL
	Example

	IONGraphicApplet
	IDL_COMMAND_0, ..., IDL_COMMAND_n
	AYSNC_COMMANDS
	DECOMPOSED_COLOR

	IONContourApplet
	X_VALUES
	Y_VALUES
	Z_VALUES
	contour_property_1, ..., contour_property_n

	IONMapApplet
	IDL_COMMAND_n
	MAP_GRID
	MAP_CONT
	MAP_[LAT,LON]
	MAP_ROTATION
	MAP_*
	MAP_GRID_*
	MAP_CONT_*
	MAP_IMAGE_DATA
	MAP_IMAGE_*
	MAP_CONTOURn_*
	MAP_DISP_ORDER

	IONPlotApplet
	X_VALUES
	Y_VALUES
	plot_property_1, ..., plot_property_n

	IONSurfaceApplet
	X_VALUES
	Y_VALUES
	Z_VALUES
	surface_property_1, ..., surface_property_n

	Building ION Applets and Applications
	Direct Graphics in ION
	The ION Device
	Keywords Accepted by the ION Device
	COPY
	DECOMPOSED
	FONT
	GET_CURRENT_FONT
	GET_FONTNAMES
	GET_GRAPHICS_FUNCTION
	GET_SCREEN_SIZE
	SET_CHARACTER_SIZE
	SET_GRAPHICS_FUNCTION

	Object Graphics in ION
	Using Object References

	Compiling .java Files
	Setting the Class Path
	Setting the Class Path When Compiling
	Setting the Class Path Environment Variable

	Error Handling and ION Exceptions
	Debug Mode
	Debugging Your Application

	Converting Between IDL and Java Bytes
	Considerations Specific to ION Applets
	Import the ION Package
	ION Applets Extend the Java Applet Class
	Including Applets in HTML Pages
	Locating the Class Files for use by ION Applets

	Supporting Java Archive Files
	Browser Support of ION Class Library Versions
	Supporting Multiple Browser Types
	Simple Applet Example
	Further Examples
	ION Applets and Scripting Languages
	Browser and Script Language Differences
	Choosing Between JavaScript and VBScript
	Methods Available
	executeIDLCommand('string')
	disconnect()

	Example: Using JavaScript
	Example: Using VBScript
	Notes on the Differences Between the JavaScript and VBScript Versions

	Tips and Tricks
	Local Netscape Users
	Stop Methods
	Client-side Animation

	ION Java Class and Method Reference
	How to Use this Chapter
	Syntax
	Data Types
	Multiple Syntax Definitions
	Optional Arguments
	Case Sensitivity
	Italic Type
	Courier Type
	IDL Code

	Arguments
	Exceptions
	IOException
	IONIllegalCommandException
	IONIsAnArrayException
	IONLicenseException
	IONNotAnArrayException
	IONSecurityException
	NumberFormatException
	UnknownHostException

	Example

	IONCallableClient Class
	IONCallableClient()
	addIONCommandDoneListener()
	listener

	addIONDisconnectListener()
	listener

	addIONOutputListener()
	listener

	connect()
	sHostname
	iPort
	sHttpHost
	iHttpPort

	disconnect()
	executeIDLCommand()
	sCommand

	getClientVersion()
	getConnectionType()
	getIDLVariable()
	sName

	removeIONCommandDoneListener()
	listener

	removeIONDisconnectListener()
	listener

	removeIONOutputListener()
	listener

	sendIDLCommand()
	sCommand

	setConnectionMethod()
	iType

	setConnectionTimeout()
	iTime

	setIDLVariable()
	sName
	oVar

	IONCanvas / IONJCanvas Class
	IONCanvas() / IONJCanvas()
	width
	height

	addIONMouseListener()
	listener
	breq

	getDownButtons()
	getImage()
	getIONGraphics()
	getMousePos()
	removeIONMouseListener()
	listener

	IONCommandDoneListener Interface
	IONCommandComplete()
	iStatus
	iIDLStatus

	IONComplex Class
	IONComplex()
	r
	i

	doubleValue()
	floatValue()
	getDImaginary()
	getImaginary()
	intValue()
	longValue()
	toString()

	IONContour / IONJContour Class
	IONContour() / IONJContour()
	iWidth
	iHeight
	Z
	sName, sZName
	X
	Y
	sXName
	sYName

	draw()
	getProperty()
	sName

	setNoErase()
	setProperty()
	sName
	vValue

	setXValue()
	X
	sName

	setYValue()
	Y
	sName

	setZValue()
	Z
	sName

	IONDComplex Class
	IONDComplex()
	r
	i

	doubleValue()
	floatValue()
	getDImaginary()
	getImaginary()
	intValue()
	longValue()
	toString()

	IONDisconnectListener Interface
	IONDisconnection()
	iStatus

	IONDrawable Interface
	createImage()
	width
	height

	getImage()
	getIONGraphics()

	IONGraphicsClient Class
	IONGraphicsClient()
	addIONDrawable()
	drawable
	index
	bSendAttr

	connect()
	sHostname
	iPort

	copyArea()
	iSource
	iDest
	x, y
	width, height
	x2, y2

	getCurrentIndex()
	getIONDrawableIndices()
	iIndices

	getNumIndices()
	readImage()
	x0
	y0
	width
	height

	removeIONDrawable()
	drawable
	index

	setDecomposed()
	bDecomposed

	setIONDrawable()
	iIndex

	IONGraphicConnection Interface
	IONGrConnection / IONJGrConnection Class
	IONGrConnection()
	addDrawable()
	ionGraphic

	connect()
	debugMode()
	bEnable

	disconnect()
	executeIDLCommand()
	sIDLCommand

	getIDLVariable()
	removeDrawable()
	ionGraphic
	iGraphic

	sendIDLCommand()
	sIDLCommand

	setDrawable()
	ionGraphic
	iGraphic

	setIDLVariable()

	IONGrContour Class
	IONGrContour()
	Z
	sName, sZName
	X
	Y
	sXName
	sYName

	draw()
	grConn

	getProperty()
	Property

	setProperty()
	Property
	Value

	setNoErase()
	setXValue()
	X
	sName

	setYValue()
	Y
	sName

	setZValue()
	Z
	sName

	IONGrDrawable / IONJGrDrawable Class
	IONGrDrawable() / IONJGrDrawable()
	iWidth
	iHeight

	addGraphic()
	ionGraphic

	debugMode()
	bEnable

	draw()
	executeIDLCommand()
	sIDLCommand

	getConnection()
	isConnected()
	removeGraphic()
	ionGraphic

	resetMulti()
	sendIDLCommand()
	sIDLCommand

	setConnection()
	ionConnection

	setMulti()
	iMulti

	setNoErase()
	bNoErase

	IONGrGraphic Class
	IONGrGraphic()
	draw()
	con

	getProperty()
	sName

	getPropertyNames()
	getPropertyString()
	registerProperty()
	PropertyName

	setNoErase()
	bFlag

	setProperty()
	sName
	vValue

	IONGrMap Class
	IONGrMap()
	lat
	lon
	rot
	sLat, sLon, sRot

	draw()
	grConn

	getProperty()
	sName

	setLat(), setLon()
	lat
	lon

	setProperty()
	sName
	vValue

	setRotation()
	rot

	IONGrMapContinents Class
	IONGrMapContinents()
	draw()
	grConn

	getProperty()
	sName

	setProperty()
	sName
	vValue

	IONGrMapGrid Class
	IONGrMapGrid()
	draw()
	grConn

	getProperty()
	sName

	setProperty()
	sName
	vValue

	IONGrMapImage Class
	IONGrMapImage()
	image

	draw()
	grConn

	getProperty()
	sName

	setImage()
	image

	setProperty()
	sName
	vValue

	setStart()
	x
	y

	IONGrPlot Class
	IONGrPlot()
	X
	Y
	sXName
	sYName

	draw()
	grConn

	getProperty()
	Property

	setNoErase()
	setProperty()
	Property
	Value

	setXValue()
	X
	sXname

	setYValue()
	Y
	sYname

	IONGrSurface Class
	IONGrSurface()
	Z
	sName, sZName
	X
	Y
	sXName
	sYName

	draw()
	grConn

	getProperty()
	sName

	setNoErase()
	setProperty()
	sName
	v

	setXValue()
	X
	sName

	setYValue()
	Y
	sName

	setZValue()
	Z
	sName

	IONMap / IONJMap Class
	IONMap() / IONJMap()
	iHeight
	iWidth
	lat
	lon
	rot

	draw()
	getProperty()
	sName

	setLat(), setLon()
	lat
	lon

	setProperty()
	sName
	vValue

	setRotation()
	rot

	IONMouseListener Interface
	mouseMoved()
	drawable
	X
	Y
	when
	mask

	mousePressed()
	drawable
	X
	Y
	when
	mask

	mouseReleased()
	drawable
	X
	Y
	when
	mask

	IONOffScreen Class
	IONOffScreen()
	width
	height
	comp

	createImage()
	width
	height

	getImage()
	getIONGraphics()

	IONOutputListener Interface
	IONOutputText()
	sLine

	IONPlot / IONJPlot Class
	IONPlot() / IONJPlot()
	iWidth
	iHeight
	X
	Y
	sXName
	sYName

	draw()
	getProperty()
	sName

	setProperty()
	sName
	vValue

	setXValue()
	X
	sName

	setYValue()
	Y
	sName

	IONSurface / IONJSurface Class
	IONSurface() / IONJSurface()
	iWidth
	iHeight
	Z
	sName, sZName
	X
	Y
	sXName
	sYName

	draw()
	getProperty()
	sName

	setNoErase()
	setProperty()
	sName
	vValue

	setXValue()
	X
	sName

	setYValue()
	Y
	sName

	setZValue()
	Z
	sName

	IONVariable Class
	IONVariable()
	Scalars
	Arrays

	arrayDimensions()
	getByte()
	getByteArray()
	getComplexArray()
	getDComplexArray()
	getDImaginary()
	getDimensionedByteArray()
	getDimensionedDoubleArray()
	getDimensionedFloatArray()
	getDimensionedIntArray()
	getDimensionedShortArray()
	getDouble()
	getDoubleArray()
	getFloat()
	getFloatArray()
	getImaginary()
	getInt()
	getIntArray()
	getShort()
	getShortArray()
	getString()
	getStringArray()
	isArray()
	toString()
	type()

	IONWindowingClient Class
	IONWindowingClient()
	comp

	connect()
	createWindow()
	xsize
	ysize
	title
	index

	deleteWindow()
	index

	showWindow()
	index
	show

	Troubleshooting
	Avoiding Conflicting ION 1.4 and ION 1.6 Installations
	Removing the ION 1.4 Service
	On Windows
	On UNIX

	Check the CLASSPATH Variable
	Check the ION Version

	Checking Web Server Communication
	Troubleshooting ION Service Problems
	Make Sure the ION Service is Started
	Check File Permissions
	Troubleshoot Port Number Problems
	Enable SOCKS Proxy to Resolve Firewall Connection Problems
	Verify SOCKS Proxy on Netscape Navigator
	Verify SOCKS Proxy on Internet Explorer

	Troubleshooting Applets that Fail to Display
	Enable Java in Your Browser
	Enable Java in Internet Explorer

	Restart the Browser
	Check the Java Console Log
	Open the Netscape Navigator Java Console
	Open the Internet Explorer Java Console

	Check the Debug Window

	Troubleshooting “Not Found” Errors
	Check the Location of Class Files
	Check File Permissions

	Troubleshooting Licensing Errors
	Setting the IDL Path
	Troubleshooting Security Errors
	Use http:// Instead of file:// with Internet Explorer
	Check Security Command Settings

	Encountering Browser Timeouts with Java Errors
	ION Server Timeout
	JDK 1.2 Required for Clients

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

